OpenTrack simulation for suburban tunnel in Paris (RER B & D)

Presentation
Opentrack – Viriato workshop
January 24th, 2008
Zurich, Switzerland
Table of contents

- Introduction
- Overall context
- Main technical data
- Major stakes
- Before simulating : our method
- Simulation in several steps
- Interesting scenarios
- Conclusion
1. Introduction: Dense transport network

Inside Paris

- **Underground**: 16 lines (1 automated), 211 km, 300 stations

- **Regional trains** crossing the city: 5 lines, 31 stations
1. Introduction : Project location

Gare du Nord + Châtelet les Halles : 2 major nodes in the Paris transport network
2. Overall context

- Operating problem:
 - Convergence of 2 overcrowded lines on the same double track tunnel
 - Regularity and customer satisfaction declining
 - Choices to be made by the Transport Authority to improve fluidity

- Client: Syndicat des Transports d’Ile de France (STIF)
 - Transport authority of Ile de France region

- Technical partners: the operators running trains in the tunnel
 - RATP (Paris region transport company) ➔ southern part of line B
 - SNCF: National railway company ➔ northern part of line B & line D

- Support: Mr Huerlimann – OpenTrack GmbH
3. Main technical data

- Timetable: 32 trains per hour per direction = 20 trains line B + 12 trains line D
- Headway: 90 seconds, theoretical headway < 90 sec
- Two controlling stations (RATP & SNCF)
- Two types of rolling stock
- Two electrical power supply systems (change at Gare du Nord)
- Driver change for line B at Gare du Nord (change between RATP and SNCF)
- Use of an « extra track » in Châtelet station, called « voie Z » by line D.
3. Main technical data

Focus on station: Châtelet-les-Halles

(north) La Plaine Stade de France ↔ St Michel Notre Dame (south)

(north) Stade de France – St Denis ↔ Paris Gare de Lyon (south)

Not simulated
Dedicated tracks in the station – No interactions with lines B & D
3. Main technical data

Focus on station: Gare du Nord

(north) La Plaine Stade de France ⇄ RER B ⇒ St Michel Notre Dame (south)
(north) Stade de France – St Denis ⇄ RER D ⇒ Paris Gare de Lyon (south)
4. Major stakes

- Dense traffic ➔ one of the most heavily occupied railway sections in France
 - 32 trains per hour and per direction
 - Gare du Nord + Châtelet les Halles: 2 major nodes in Paris network

- Signalling system in the tunnel
 - Classic signal system: fixed block 3 aspects signalling
 - Continuous Speed Control ➔ acceleration authorised before signal sighted
 - Different driving behaviour between SNCF and RATP personal

- Change of conductor in Gare du Nord
 - Dwell time: 2 minutes in reality, instead of 1 minute in timetable

- Major goals for regularity
 - Intention of Transport Authority: allowing more trains on the line each hour
 - Today: every peak hour, 2 trains cancelled by direction
5. Before simulating: Present situation

Diagnostic and analysis of present operations, normal situation without major disturbances

- **Theoretical timetable**
 - Number of trains
 - Different headways (ex: a train every 3 min for line B)
 - Identification of peak hours

- **Real operating data (statistics concerning a representative period)**
 - Distribution of delays on arrival at stations
 - Distribution of dwell times
 - Use of track Z in Châtelet station
 - Headways between trains

- **Site visits**
 - Tracks
 - Interlocking posts
 - Cab rides

32 trains p.h.p.d. in theory

25 trains p.h.p.d. in reality
5. Model calibration chart

Data measured during target period of reference
20 days from the 4th to 29th September 2006

- **Departure delays** measured in
 stations surrounding the main study zone
 (departures toward study zone)

- **Arrival delays** measured in
 stations surrounding the main study zone
 (departures toward study zone)

Analysis
Identical results vs. measured values?
(i.e. within tolerances)

YES
NO

OPENTRACK

- **Modelling**
- **Calibration iterations**
- **Model calibrated and validated**

Input data (entering delays in the practical modelling zone)

- **Simulation**
- Results from simulating the present situation
5. Before simulating : Model calibration

- Basic definition
 - Infrastructure (tracks, station platforms, speeds, signals, routes settings)
 - Rolling stock (types and performances)
 - Timetable

- Calibration method
 - Extended peak hours, 06.00 - 10.00
 - Filtering of circulations: from 5560 trains planned to 4920 trains used (data considered reliable)
 - 20 simulation runs

- Calibration criteria
 - Shortened peak period: 07.15 - 09.15
 - Filtering of circulations: from 4920 trains to 2145 trains in that specific period
 - Delays on arrival at stations (Average, standard deviation, correlation)
5. Before simulating : Reference

- Based on the calibrated model
 - All trains within the theoretical timetable
 - Infrastructure unchanged
 - Modification of injection rules for line B South > North

- Evaluation criteria of reference (also used to evaluate scenarios)
 - Peak hour capacity
 - Overall delay for each line, end of main study zone
 - Mean delays + standard deviation
6. Simulation in several steps: scenarios

- Modelling of the following parameters, according to the scenario
 - Infrastructure
 - Initial delay (piecewise linear distribution)
 - Timetable and dwell times
 - Rolling stock

- Visualisation on screen ➔ check of correct modelling

- Simulation: 20 runs for each scenario, without visualisation

- Statistical analysis
 - « OT_timetablestatistics.txt » file, wasn’t helpful, only the last run recorded
 - Our partner, Mr Huerlimann developed a new file with the listing of 20 runs
 - Direct use of the Excel file in a specific Excel-based program
6. Outputs ...
7. Interesting scenarios

- **Short term scenario : Turnaround at Châtelet-les-Halles using track Z**
 - Line RER D : lower traffic in the tunnel
 - 4 trains / 12 stop at Châtelet les Halles, on a dedicated track (voie Z)
 - 8 trains remaining in the tunnel each hour
 - Line RER B : all trains continuing in the tunnel (20 each peak hour)

- **Short term scenario : Suppression of driver change**
 - Only line B concerned, today both operated by SNCF and RATP in their perimeter
 - Harmonization of driving behaviors in the tunnel (start on « yellow » warning signals)
 - Reduction of dwell times for RER B in Gare du Nord (= Châtelet times)
7. Interesting scenarios

- **Mid term scenario: Automated driving**
 - All trains runned following ATP rules in extended perimeter (cf. SACEM system)
 - Modification of Perf. on time: 100%
 - Running times and dwell times unchanged
 - Block shortening + added signals

- **Rail switch in Gare du Nord**
 - > South: allowing RER B on tracks originally dedicated to RER D
 - > North: possible track interchange for both line
 - Running times and dwell times unchanged
 - Adding priorities
8. Conclusion

- Specificity of the study
 - 40 modelled scenarios with OT (27 « officially » ordered by client)
 - A 18 months study, 6 sessions of simulation
 - OT : a tool for consensus between authority and operators
 - Statistical approach of the problem

- Possible improvements
 - Different boarding-unboarding times according to rolling stock
 - Interface with other simulation software (i.e. : Simwalk)
 - Definition of crowds on platform : impact on dwell times
Thank you for your attention !!!
I’m available for your questions
Brief history of line RER B and RER D

- From 1846: historical « ligne de Sceaux » ending first at Denfert-Rochereau, later at Luxembourg,
- 1977: continuation under the Seine river, until Châtelet les Halles,
- 1981: opening of the Châtelet – Gare du Nord tunnel
- 1983: junction with Roissy-Rail airport courses and the Mitry – Gare du Nord line = today’s line B

- 1987 ➔ 1990: trains coming from Villiers le Bel, Goussainville and Orry la Ville stopping first at Gare du Nord, extended at Châtelet les Halles (via existing tunnel)
- 1995: opening of the Châtelet – Gare de Lyon underground section, trains heading toward Melun, La Ferté-Alais and Malesherbes
- 1998: opening of Stade de France Saint-Denis station
Rolling stock involved in the tunnel

- Date of construction: 1980-1983
 - V max: 140 km/h
 - Max passenger capacity: 843 p.
 - Length: 104 m
 - Weight: 283 T
 - Concerned line: RER B
 (also running on line A)

- Date of construction: 1988 - 1998
 - V max: 140 km/h
 - Max passenger capacity: 1413 p.
 - Length: 129 m
 - Weight: 381 T
 - Concerned line: RER D
Ile-de-France regional rail network

- Réseau Express Régional
- Strong and identified network
- Paris underground cross-over
- 2 operators: RATP + SNCF

- SNCF operation (Transilien)
- Basic commuter lines
- Terminus in 6 main stations
- Possible shared trunks with RER lines

PARIS
7. Other scenarios – selected list

Basic scenarios

- Equal RS performances for both lines
- Modification of line D headway
- 2nd tunnel between surrounding stations
- Modification of injection following improvements outside perimeter

Combined scenarios
What is Egis Rail?

Europe’s major financial institution, N°1 French financial group

A French consulting, engineering and operating firm, dedicated to development infrastructures

Rail and transit consultants and engineers, formerly named SEMALY, created in 1968

Covering all types of transport projects

→ Metro
→ Light Rail Transit
→ Conventional Rail
→ High Speed Lines

For the benefit of

→ Ministries of Transport
→ Regional or City Authorities
→ Operators
→ Private Consortia, etc…
Egis Rail® Range of services

- Planning studies, Consultancy and Audits
- Design
- Procurement assistance
- Construction management and supervision
- Manufacturing control
- Testing and commissioning
- Maintenance management
Egis Rail ? References

METRO

LYON: whole network
(line D, fully automated)

Marseilles: extension of the network

Tunnel boring machine
Egis Rail ? References

LIGHT RAIL TRANSIT

DUBLIN: Technical Design & Construction Management

OPORTO: integrated engineering within a private Consortium

KRAKOW: design assistance and construction supervision
OpenTrack simulation for suburban tunnel in Paris (RER B & D)

Presentation
OpenTrack – Viriato workshop
January 24th, 2008
Zurich, Switzerland
Table of contents

- Introduction
- Overall context
- Main technical data
- Major stakes
- Before simulating: our method
- Simulation in several steps
- Interesting scenarios
- Conclusion
1. Introduction: Dense transport network

Inside Paris

- **Underground**: 16 lines (1 automated), 211 km, 300 stations

- **Regional trains** crossing the city: 5 lines, 31 stations
1. Introduction: Project location

Gare du Nord + Châtelet les Halles: 2 major nodes in the Paris transport network

Stade de France St-Denis
La Plaine Stade de France
Gare du Nord + Châtelet les Halles
Gare de Lyon
St-Michel-Notre Dame
Tour Eiffel
Arc de Triomphe
Notre Dame
Louvre
Montmartre
Arc de Triomphe
2. Overall context

- Operating problem:
 - Convergence of 2 overcrowded lines on the same double track tunnel
 - Regularity and customer satisfaction declining
 - Choices to be made by the Transport Authority to improve fluidity

- Client: Syndicat des Transports d’Ile de France (STIF)
 - Transport authority of Ile de France region

- Technical partners: the operators running trains in the tunnel
 - RATP (Paris region transport company) ➔ southern part of line B
 - SNCF: National railway company ➔ northern part of line B & line D

- Support: Mr Huerlimann – OpenTrack Gmbh
3. Main technical data

- **Timetable**: 32 trains per hour per direction = 20 trains line B + 12 trains line D

- **Headway**: 90 seconds, theoretical headway < 90 sec

- **Two controlling stations (RATP & SNCF)**

- **Two types of rolling stock**

- **Two electrical power supply systems** (change at Gare du Nord)

- **Driver change for line B at Gare du Nord** (change between RATP and SNCF)

- **Use of an « extra track » in Châtelet station, called « voie Z » by line D.**
3. Main technical data

Focus on station: Châtelet-les-Halles

(north) La Plaine Stade de France ⇔ RER B ⇔ St Michel Notre Dame (south)
(north) Stade de France – St Denis ⇔ RER D ⇔ Paris Gare de Lyon (south)

Not simulated
Dedicated tracks in the station – No interactions with lines B & D
3. Main technical data

Focus on station: Gare du Nord

- La Plaine Stade de France (north) ↔ St Michel Notre Dame (south)
- Stade de France – St Denis (north) ↔ Paris Gare de Lyon (south)
4. Major stakes

- Dense traffic ➔ one of the most heavily occupied railway sections in France
 - 32 trains per hour and per direction
 - Gare du Nord + Châtelet les Halles: 2 major nodes in Paris network

- Signalling system in the tunnel
 - Classic signal system: fixed block 3 aspects signalling
 - Continuous Speed Control ➔ acceleration authorised before signal sighted
 - Different driving behaviour between SNCF and RATP personal

- Change of conductor in Gare du Nord
 - Dwell time: 2 minutes in reality, instead of 1 minute in timetable

- Major goals for regularity
 - Intention of Transport Authority: allowing more trains on the line each hour
 - Today: every peak hour, 2 trains cancelled by direction
5. Before simulating: Present situation

Diagnostic and analysis of present operations, normal situation without major disturbances

- Theoretical timetable
 - Number of trains
 - Different headways (ex: a train every 3 min for line B)
 - Identification of peak hours

- Real operating data (statistics concerning a representative period)
 - Distribution of delays on arrival at stations
 - Distribution of dwell times
 - Use of track Z in Châtelet station
 - Headways between trains

- Site visits
 - Tracks
 - Interlocking posts
 - Cab rides

32 trains p.h.p.d. in theory

25 trains p.h.p.d. in reality
5. Model calibration chart

Data measured during target period of reference
20 days from the 4th to 29th September 2006

- Departure delays measured in stations surrounding
 the main study zone (departures toward study zone)
- Arrival delays measured in stations surrounding the main
 study zone (departures toward study zone)

Analysis
Identical results vs. measured values? (i.e. within tolerances)

YES

Model calibrated and validated

NO

Input data (entering delays in the practical modelling zone)

simulation

Results from simulating the present situation
5. Before simulating : Model calibration

Basic definition
- Infrastructure (tracks, station platforms, speeds, signals, routes settings)
- Rolling stock (types and performances)
- Timetable

Calibration method
- Extended peak hours, 06.00 - 10.00
- Filtering of circulations : from 5560 trains planned to 4920 trains used (data considered reliable)
- 20 simulation runs

Calibration criteria
- Shortened peak period : 07.15 - 09.15
- Filtering of circulations : from 4920 trains to 2145 trains in that specific period
- Delays on arrival at stations (Average, standard deviation, correlation)
5. Before simulating: Reference

- Based on the calibrated model
 - All trains within the theoretical timetable
 - Infrastructure unchanged
 - Modification of injection rules for line B South > North

- Evaluation criteria of reference (also used to evaluate scenarios)
 - Peak hour capacity
 - Overall delay for each line, end of main study zone
 - Mean delays + standard deviation
6. Simulation in several steps : scenarios

- Modelling of the following parameters, according to the scenario
 - Infrastructure
 - Initial delay (piecewise linear distribution)
 - Timetable and dwell times
 - Rolling stock

- Visualisation on screen ➔ check of correct modelling

- Simulation : 20 runs for each scenario, without visualisation

- Statistical analysis
 - « OT_timetablestatistics.txt » file, wasn’t helpful, only the last run recorded
 - Our partner, Mr Huerlimann developed a new file with the listing of 20 runs
 - Direct use of the Excel file in a specific Excel based program
6. Outputs ...

Situation de référence

Scénario 2 : suppression de relève conducteur

Sens Nord > Sud Châtelet-les-Halles – ligne B

67% 33%
5 min

25% 75% 33%
7. Interesting scenarios

- Short term scenario: Turnaround at Châtelet-les-Halles using track Z
 - Line RER D: lower traffic in the tunnel
 - 4 trains / 12 stop at Châtelet les Halles, on a dedicated track (voie Z)
 - 8 trains remaining in the tunnel each hour
 - Line RER B: all trains continuing in the tunnel (20 each peak hour)

- Short term scenario: Suppression of driver change
 - Only line B concerned, today both operated by SNCF and RATP in their perimeter
 - Harmonization of driving behaviors in the tunnel (start on « yellow » warning signals)
 - Reduction of dwell times for RER B in Gare du Nord (= Châtelet times)
7. Interesting scenarios

- **Mid term scenario:** Automated driving
 - All trains runned following ATP rules in extended perimeter (cf. SACEM system)
 - Modification of Perf. on time: 100%
 - Running times and dwell times unchanged
 - Block shortening + added signals

- **Rail switch in Gare du Nord**
 - > South: allowing RER B on tracks originally dedicated to RER D
 - > North: possible track interchange for both line
 - Running times and dwell times unchanged
 - Adding priorities
8. Conclusion

Specificity of the study
- 40 modelled scenarios with OT (27 « officialy » ordered by client)
- A 18 months study, 6 sessions of simulation
- OT : a tool for concensus between authority and operators
- Statistical approach of the problem

Possible improvements
- Different boarding-unboarding times according to rolling stock
- Interface with other simulation software (i.e. : Simwalk)
- Definition of crowds on platform : impact on dwell times
Thank you for your attention !!!

I’m available for your questions
Brief history of line RER B and RER D

- From 1846: historical « ligne de Sceaux » ending first at Denfert-Rochereau, later at Luxembourg,
- 1977: continuation under the Seine river, until Châtelet les Halles,
- 1981: opening of the Châtelet – Gare du Nord tunnel
- 1983: junction with Roissy-Rail airport courses and the Mitry – Gare du Nord line = today’s line B

- 1987 ➔ 1990: trains coming from Villiers le Bel, Goussainville and Orry-la-Ville stopping first at Gare du Nord, extended at Châtelet les Halles (via existing tunnel)
- 1995: opening of the Châtelet – Gare de Lyon underground section, trains heading toward Melun, La Ferté-Alais and Malesherbes
- 1998: opening of Stade de France Saint-Denis station
Rolling stock involved in the tunnel

- Date of construction: 1980-1983
- V max: 140 km/h
- Max passenger capacity: 843 p.
- Length: 104 m
- Weight: 283 T
- Concerned line: RER B
 (also running on line A)

- Date of construction: 1988 - 1998
- V max: 140 km/h
- Max passenger capacity: 1413 p.
- Length: 129 m
- Weight: 381 T
- Concerned line: RER D
Ile-de-France regional rail network

- Réseau Express Régional
- Strong and identified network
- Paris underground cross-over
- 2 operators: RATP + SNCF

SNCF operation (Transilien)
- Basic commuter lines
- Terminus in 6 main stations
- Possible shared trunks with RER lines
7. Other scenarios – selected list

- Basic scenarios
 - Equal RS performances for both lines
 - Modification of line D headway
 - 2nd tunnel between surrounding stations
 - Modification of injection following improvements outside perimeter

- Combined scenarios
What is Egis Rail?

Europe’s major financial institution, N°1 French financial group

A French consulting, engineering and operating firm, dedicated to development infrastructures

Rail and transit consultants and engineers, formerly named SEMALY, created in 1968

Covering all types of transport projects

→ Metro
→ Light Rail Transit
→ Conventional Rail
→ High Speed Lines

For the benefit of

→ Ministries of Transport
→ Regional or City Authorities
→ Operators
→ Private Consortia, etc…
Egis Rail ? Range of services

- Planning studies, Consultancy and Audits
- Design
- Procurement assistance
- Construction management and supervision
- Manufacturing control
- Testing and commissioning
- Maintenance management
Egis Rail ? References

METRO

LYON : whole network
(line D, fully automated)

MARSEILLES
Extension of the network

Tunnel boring machine
Egis Rail ? References

LIGHT RAIL TRANSIT

DUBLIN: Technical Design & Construction Management

OPORTO: integrated engineering within a private Consortium

KRAKOW: design assistance and construction supervision
OpenTrack simulation for suburban tunnel in Paris (RER B & D)

Presentation
Opentrack – Viriato workshop
January 24th, 2008
Zurich, Switzerland
Table of contents

- Introduction
- Overall context
- Main technical data
- Major stakes
- Before simulating: our method
- Simulation in several steps
- Interesting scenarios
- Conclusion
1. Introduction: Dense transport network

Inside Paris

- **Underground**: 16 lines (1 automated), 211 km, 300 stations
- **Regional trains crossing the city**: 5 lines, 31 stations
1. Introduction: Project location

Gare du Nord + Châtelet les Halles: 2 major nodes in the Paris transport network.
2. Overall context

- Operating problem:
 - Convergence of 2 overcrowded lines on the same double track tunnel
 - Regularity and customer satisfaction declining
 - Choices to be made by the Transport Authority to improve fluidity

- Client: Syndicat des Transports d’Ile de France (STIF)
 - Transport authority of Ile de France region

- Technical partners: the operators running trains in the tunnel
 - RATP (Paris region transport company) ➔ southern part of line B
 - SNCF: National railway company ➔ northern part of line B & line D

- Support: Mr Huerlimann – OpenTrack GmbH
3. Main technical data

- Timetable: 32 trains per hour per direction = 20 trains line B + 12 trains line D
- Headway: 90 seconds, theoretical headway < 90 sec
- Two controlling stations (RATP & SNCF)
- Two types of rolling stock
- Two electrical power supply systems (change at Gare du Nord)
- Driver change for line B at Gare du Nord (change between RATP and SNCF)
- Use of an « extra track » in Châtelet station, called « voie Z » by line D.
3. Main technical data

Focus on station: Châtelet-les-Halles

- La Plaine Stade de France ↔ St Michel Notre Dame (south)
- Stade de France – St Denis ↔ Paris Gare de Lyon (south)

Not simulated
Dedicated tracks in the station – No interactions with lines B & D
3. Main technical data

Focus on station: Gare du Nord

(north) La Plaine Stade de France ↔ RER B ↔ St Michel Notre Dame (south)
(north) Stade de France – St Denis ↔ RER D ↔ Paris Gare de Lyon (south)
4. Major stakes

- Dense traffic ➔ one of the most heavily occupied railway sections in France
 - 32 trains per hour and per direction
 - Gare du Nord + Châtelet les Halles: 2 major nodes in Paris network

- Signalling system in the tunnel
 - Classic signal system: fixed block 3 aspects signalling
 - Continuous Speed Control ➔ acceleration authorised before signal sighted
 - Different driving behaviour between SNCF and RATP personal

- Change of conductor in Gare du Nord
 - Dwell time: 2 minutes in reality, instead of 1 minute in timetable

- Major goals for regularity
 - Intention of Transport Authority: allowing more trains on the line each hour
 - Today: every peak hour, 2 trains cancelled by direction
5. Before simulating: Present situation

Diagnostic and analysis of present operations, normal situation without major disturbances

- **Theoretical timetable**
 - Number of trains
 - Different headways (ex: a train every 3 min for line B)
 - Identification of peak hours
 - In theory: 32 trains p.h.p.d.

- **Real operating data (statistics concerning a representative period)**
 - Distribution of delays on arrival at stations
 - Distribution of dwell times
 - Use of track Z in Châtelet station
 - Headways between trains
 - In reality: 25 trains p.h.p.d.

- **Site visits**
 - Tracks
 - Interlocking posts
 - Cab rides
5. Model calibration chart

Data measured during target period of reference
20 days from the 4th to 29th September 2006

Departure delays measured in stations surrounding the main study zone (departures toward study zone)

Arrival delays measured in stations surrounding the main study zone (departures toward study zone)

Analysis Identical results vs. measured values? (i.e. within tolerances)

OSENTRACK

Modelling

Calibration iterations

Model calibrated and validated

Input data (entering delays in the practical modelling zone)

Simulation

Results from simulating the present situation

YES

NO
5. Before simulating : Model calibration

- **Basic definition**
 - Infrastructure (tracks, station platforms, speeds, signals, routes settings)
 - Rolling stock (types and performances)
 - Timetable

- **Calibration method**
 - Extended peak hours, 06.00 - 10.00
 - Filtering of circulations : from 5560 trains planned to 4920 trains used (data considered reliable)
 - 20 simulation runs

- **Calibration criteria**
 - Shortened peak period : 07.15 - 09.15
 - Filtering of circulations : from 4920 trains to 2145 trains in that specific period
 - Delays on arrival at stations (Average, standard deviation, correlation)
5. Before simulating: Reference

- Based on the calibrated model
 - All trains within the theoretical timetable
 - Infrastructure unchanged
 - Modification of injection rules for line B South > North

- Evaluation criteria of reference (also used to evaluate scenarios)
 - Peak hour capacity
 - Overall delay for each line, end of main study zone
 - Mean delays + standard deviation
6. Simulation in several steps : scenarios

- Modelling of the following parameters, according to the scenario
 - Infrastructure
 - Initial delay (piecewise linear distribution)
 - Timetable and dwell times
 - Rolling stock

- Visualisation on screen ➔ check of correct modelling

- Simulation : 20 runs for each scenario, without visualisation

- Statistical analysis
 - « OT_timetablestatistics.txt » file, wasn’t helpful, only the last run recorded
 - Our partner, Mr Huerlimann developped a new file with the listing of 20 runs
 - Direct use of the Excel file in a specific Excel based program
6. Outputs …

17/09/07 January 24th, 2008
7. Interesting scenarios

- Short term scenario: Turnaround at Châtelet-les-Halles using track Z
 - Line RER D: lower traffic in the tunnel
 - 4 trains / 12 stop at Châtelet les Halles, on a dedicated track (voie Z)
 - 8 trains remaining in the tunnel each hour
 - Line RER B: all trains continuing in the tunnel (20 each peak hour)

- Short term scenario: Suppression of driver change
 - Only line B concerned, today both operated by SNCF and RATP in their perimeter
 - Harmonization of driving behaviors in the tunnel (start on « yellow » warning signals)
 - Reduction of dwell times for RER B in Gare du Nord (≡ Châtelet times)
7. Interesting scenarios

Mid term scenario: Automated driving

- All trains runned following ATP rules in extended perimeter (cf. SACEM system)
- Modification of Perf. on time: 100%
- Running times and dwell times unchanged
- Block shortening + added signals

Rail switch in Gare du Nord

- > South: allowing RER B on tracks originally dedicated to RER D
- > North: possible track interchange for both line
- Running times and dwell times unchanged
- Adding priorities
8. Conclusion

特定性

- 40 模拟场景与 OT（27 « officialy » 经客户点名）
- 18 个月研究，6 次模拟会议
- OT：一种工具，用于权威和操作员之间的共识
- 统计问题的解决方案

可能的改进

- 根据运行车辆的不同，不同的上车-下车时间
- 与其他模拟软件（i.e.：Simwalk）的接口
- 平台上的人群定义：影响停留时间
Thank you for your attention !!!

I’m available for your questions
Brief history of line RER B and RER D

- From 1846: historical « ligne de Sceaux » ending first at Denfert-Rochereau, later at Luxembourg,
- 1977: continuation under the Seine river, until Châtelet les Halles,
- 1981: opening of the Châtelet – Gare du Nord tunnel
- 1983: junction with Roissy-Rail airport courses and the Mitry – Gare du Nord line = today’s line B

- 1987 ➔ 1990: trains coming from Villiers le Bel, Goussainville and Orly la Ville stopping first at Gare du Nord, extended at Châtelet les Halles (via existing tunnel)
- 1995: opening of the Châtelet – Gare de Lyon underground section, trains heading toward Melun, La Ferté-Alais and Malesherbes
- 1998: opening of Stade de France Saint-Denis station
Rolling stock involved in the tunnel

17/07/07 January 24th, 2008

- Date of construction: 1980-1983
- V max: 140 km/h
- Max passenger capacity: 843 p.
- Length: 104 m
- Weight: 283 T
- Concerned line: RER B
 (also running on line A)

- Date of construction: 1988 - 1998
- V max: 140 km/h
- Max passenger capacity: 1413 p.
- Length: 129 m
- Weight: 381 T
- Concerned line: RER D
Ile-de-France regional rail network

- Réseau Express Régional
- Strong and identified network
- Paris underground cross-over
- 2 operators: RATP + SNCF

- SNCF operation (Transilien)
- Basic commuter lines
- Terminus in 6 main stations
- Possible shared trunks with RER lines
7. Other scenarios – selected list

- Basic scenarios
 - Equal RS performances for both lines
 - Modification of line D headway
 - 2nd tunnel between surrounding stations
 - Modification of injection following improvements outside perimeter

- Combined scenarios
What is Egis Rail?

Europe’s major financial institution, N°1 French financial group

A French consulting, engineering and operating firm, dedicated to development infrastructures

Rail and transit consultants and engineers, formerly named SEMALY, created in 1968

Covering all types of transport projects

- Metro
- Light Rail Transit
- Conventional Rail
- High Speed Lines

For the benefit of

- Ministries of Transport
- Regional or City Authorities
- Operators
- Private Consortia, etc…
Egis Rail ? Range of services

- Planning studies, Consultancy and Audits
- Design
- Procurement assistance
- Construction management and supervision
- Manufacturing control
- Testing and commissioning
- Maintenance management
Egis Rail ? References

METRO

LYON : whole network (line D, fully automated)

MARSEILLES

Extension of the network
Egis Rail ? References

LIGHT RAIL TRANSIT

DUBLIN: Technical Design & Construction Management

OPORTO: integrated engineering within a private Consortium

KRAKOW: design assistance and construction supervision