presentation to OpenTrack user meeting
Giorgio Mastella
Vito Velardi
Zurich, January 24th 2008

NEF) Veneto Regional Metropolitan Railway System

An application of OpenTrack in the design of

 Veneto Regional Metropolitan Railway Systemforeword
Veneto Region
project features

NET) NET Engineering S.p.A.

NET Engineering S.p.A. is a dynamic Company which produces and supplies technical and management services in the field of civil engineering for customers in Italy and abroad.

NET Engineering today is a joint stock company which employs about 160 people, with offices in Monselice (30 minutes from Venezia), Roma,
 Mestre-Venezia, Napoli.

NET International aims at the markets of Central and Eastern Europe, where a big portion of the EU investments for infrastructures will be dedicated to the Countries of recent or forthcoming entrance into the European Union
In July 2007 NET International acquired the majority of Spiekermann, a German civil engineering group based in Dusseldorf, with about 250 FTE's and a 23 M€ turnover

The combined size of NET Engineering International is now of about 400 FTE's and 45 M€ turnover.

NEF) Veneto Regional Metropolitan Railway System

An application of OpenTrack in the design of

 Veneto Regional Metropolitan Railway Systemforeword
Veneto Region
project features
(NEI) Veneto Region: an overview

$=18.391$ sq km

4.500.000 people
population density:
245 people per sq km

(110) A widespread urbanization
\square 300 people/sq km
\square 6000 people/sq km

(NEI) Railways in Veneto

1500 km of railway

lines in the region

NEF) Veneto Regional Metropolitan Railway System

An application of OpenTrack in the design of

 Veneto Regional Metropolitan Railway Systemforeword
Veneto Region
project features

NEI) system design approach

```
SOCIO-ECONOMIC


N101) travel demand estimation: socioeconomic data

\section*{Study area}

Zoning

Socio-economic data: population, students, workers, working places, schools, ...

(NEI) travel demand estimations: surveys

168 traffic counts inside and outside the region, with 4.400 interviews to drivers
12.500 telephone interviews to people living in the region, concerning trips and transport modes
3.700 interviews to train passengers


\section*{(NEI) travel demand}

(NE) travel demand

(NET) critical points in private transport

Traffic assignment to private network

(NE) critical points in private transport



\section*{(NEI) system planning approach}

(NEI) service features: high frequency all day long

(NEI) service features: rational connections

(NEI) service features: coordination with bus services

(NEI) The design tool: VIRIATO


(NEI) system design approach

(NEI) interaction demand-supply: NEMO

MODE/SERVICE CHOICE: timetable diachronic model

\author{
O/D Matrix for \\ public transport
}

\section*{Early arrival run}

Private Car

Late arrival run

\author{
Late Bus
}

\section*{NEI) passenger load for each single bus or train run}


(NEI) system planning approach
OCIO-ECONOMIC
TARGET AND
BACKEROUKD COHSTRAIAT
Study area
Traffic zone

Transport demand
Analysis and
Analysis and Estimation

Present Supply
Anatysis:
-Train line -Bus line

Present traffic flow Critical point
- Supply Component
- Demand Component
- Interaction Demand Supply
- General system check

Check of:
- Level of Service
- Capacity

\section*{SERVICE CHOICE}

NEI) detailed analysis:

\section*{We used OpenTrack to evaluate:}
the feasibility of a new local train timetable and its interaction with other trains (long distance, freight) in:
the principal nodes of the network (Venice, Mestre, Padova, Verona, ...)
the new high speed / high capacity line between Mestre and Padova
the new lines and the new stations layouts under construction in the Region

NEI) an example: Venezia - Verona line


\section*{(NEI) An example: the Venezia - Verona line}

(NEF) An example: the Venezia - Verona line



(NEI) An example: the Venezia - Verona line

(NEI) An example: the Venezia - Verona line

(NEI) An example: the Venezia - Verona line

(NEI) Some numbers about the network

281 stations
8471 edges, 15812 vertexes, 3342 signals
268 lines, 162 pictures, 246 rectangles, 268 lines, 2027 texts```

