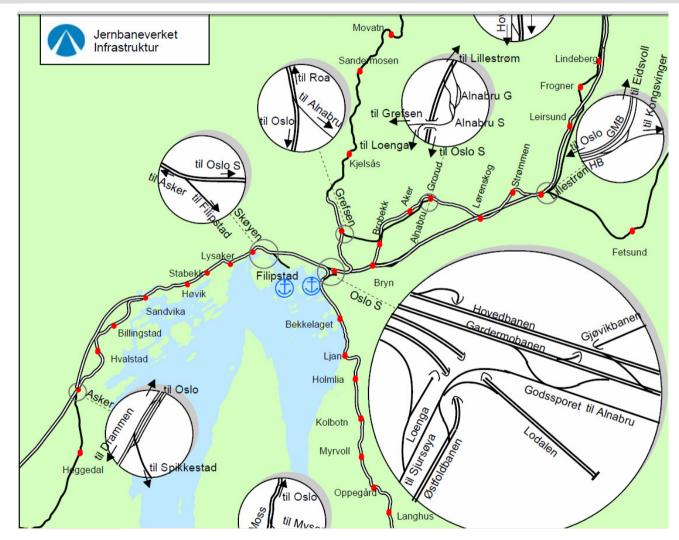


Intermodal Terminal Alnabru

Results of the rail simulation for Building step 1

Vortrag im Rahmen der IT10 Rail am 21.01.2010 in Zürich

Auftraggeber:


Jernbaneverket Utbygging Oslo Norway

erarbeitet durch:

ETC Transport Consultants GmbH Am Karlsbad 11 10785 Berlin Germany

Railway network of Greater Oslo Area

Heute:

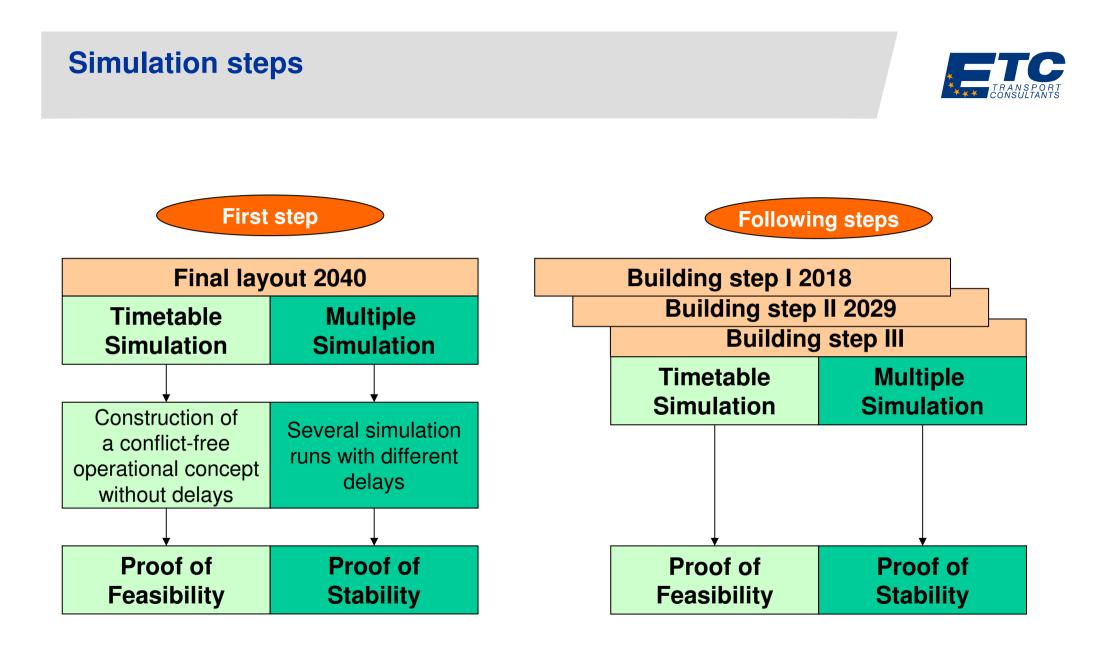
Alnabru ist der größte Rangierbahnhof Norwegens.

Im Nordbereich erfolgt KV-Umschlag.

Alnabru liegt an der zweigleisigen Hovedbanen* (Lokaltog, halbstündlich mit Verstärkern)

Zukünftig:

KV-Drehscheibe Norwegens (Erhöhung des Schienenanteils)


Verdreifachung der Kapazität (1,5 Mio. TEU im Jahr)

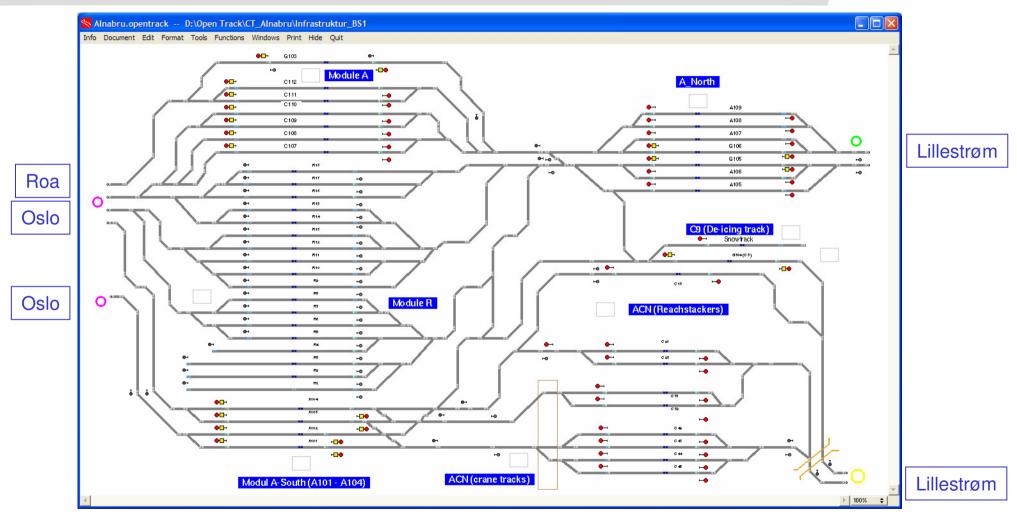
Schrittweiser Umbau bis 2040 zum intermodalen Terminal mit bis zu 4 Kranmodulen im Final Layout

Parallele Ausweitung und Verdichtung des Regionalverkehrs

* Oslo S – Grorud - Lillestrøm – Eidsvoll: 68 km

a member of the COWI group

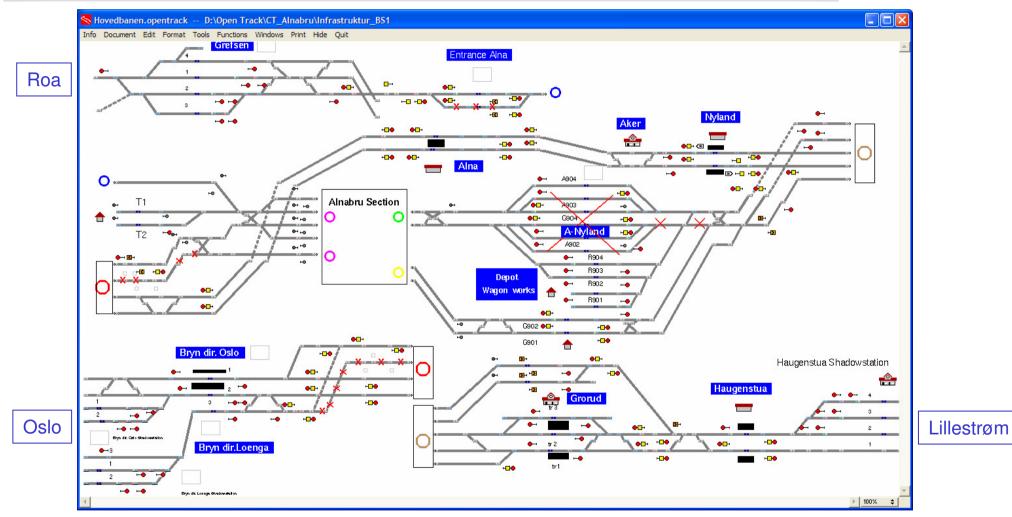
Intermodal Terminal Alnabru



The main task of the railway simulation of Alnabru Building step 1 (BS1) is to answer the following questions:

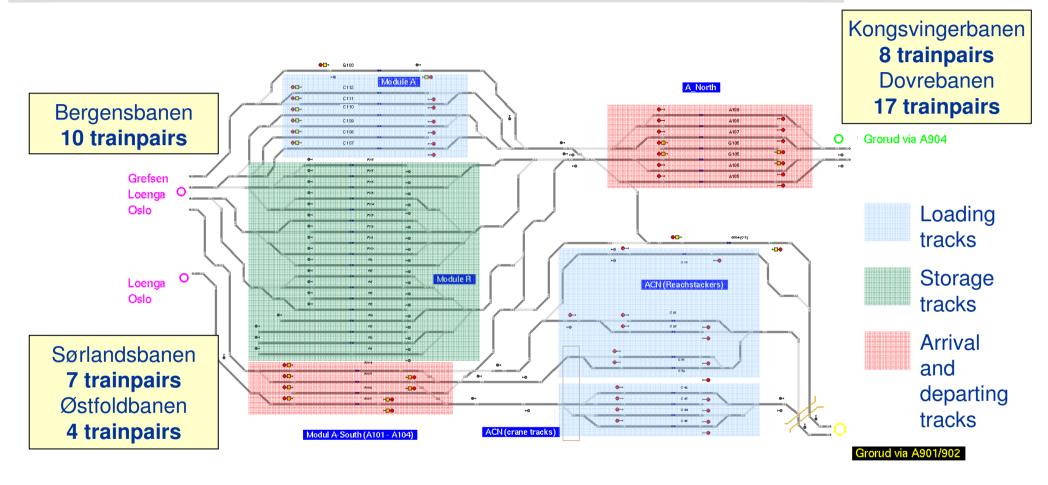
- 1. Is the chosen track layout capable to cope with the expected cargo volume?
- 2. Is the operational concept **robust** enough ?
- 3. Is the terminal from the railway side **dimensioned properly** or is it oversized ?

Track layout Terminal area



Intermodal Terminal Alnabru

Track layout Connections to the railway network


a member of the COWI group

Intermodal Terminal Alnabru

ETC Transport Consultants GmbH 🖀 +49 30 - 25 46 5 - 326 e-mail: daniel.kerwien@etc-consult.de web: www.etc-consult.de

Track layout Number of trains inbound and outbound

Simulation strategy – step by step

The first train movements integrated in the simulation model is the group of **standard train routes** for inbound and outbound trains, including the shunting traffic between the inbound tracks and the loading tracks.

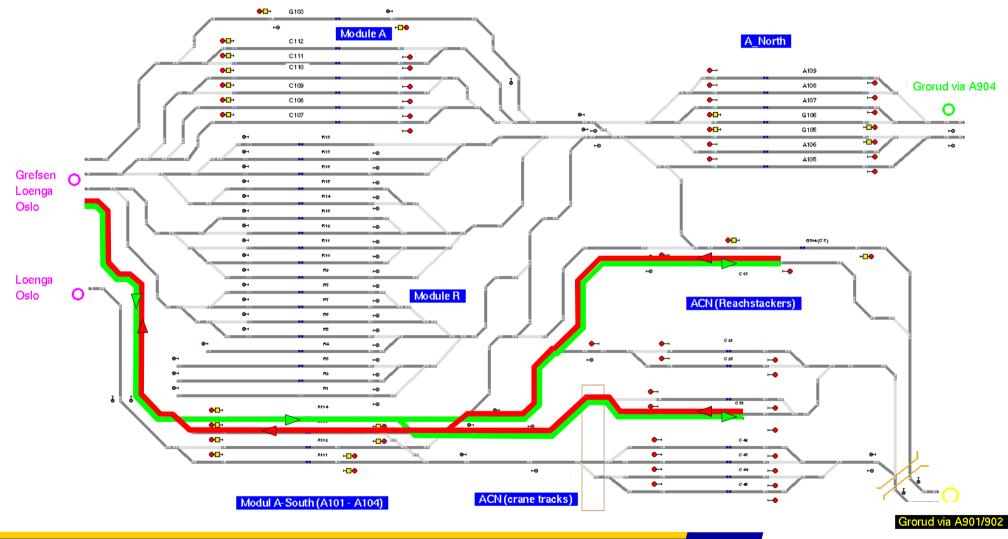
Regular movements of shunting locos and e-locos moving to and from the trains. These movements have been calculated analytically at first. Based on these figures, typical shunting movements have been integrated into the simulation.

Special movements to and from the wagon works. These events have a stochastic character and therefore can't be simulated in a timetable-based manner. Therefore they have been integrated on a random base.

Occupation of loading tracks

Module A						ACN Reachstacker					ACN Crane			
C107	C108	C109	C110	C111	C112	C13	C21	C23	C31	C32	C42	C43	C44	C45
580	580	580	580	580	580	>=580	>=580	>=580	>=580	>=580	>=580	>=580	>=580	>=580
00;25			v Dovreb.	00:13		v Bergen	00:05	23:58	41901	j				n Int. (ØVB)
	57029			00:17	n Dovreb.	55019			00:44			n Stavanger		00:35
			57033		01:25			55017	00:48	01:07		01:00	58015	01:25
	n Dovreb.	\downarrow	_	57031	\frown	01:32	01:55	n Bergen	41901			01:50		v Int. (ØVB)
	02:25		02:13			01:58	v Bergen	02:05	n Int. (K			v Stavanger	02:10	
	02:35		02:17	n Dovreb.	$\downarrow \rightarrow$		55001		02:55	02:35			02:10	419621
	v Dovreb.			03:25	/ \	55019				03:07		58001		
		03:35	57033		∦\	n Bergen	03:32	03:55		v Int. (KVB)			58015	03:36
	57001	v Dovreb.		\rightarrow		04:05	_	v Bergen		419003		04:01		
			n Dovreb.	$ \longrightarrow $			T	55003		04:44			n Stavanger	
	05:13	57003	05:25	1	N /				05:07	04:48			05:00	05:25
	05:17	00.40	05:35	<u> </u>	N /	05:55		05:32	v Int. (K		05:50	_	$ \land $	v Int. (ØVB)
	57004	06:13	v Dovreb.	1 1		v Bergen		05:58	41900		v Stavanger			
	57001	06:17	57005	↓ /		55005			06:44	06:55	50005	_	(419623
	n Deureh	57003	57005	\rightarrow	07:35			55003	06:48		58005			07.00
	n Dovreb. 08:25	57003	08:13		v Dovreb.	07:32		n Bergen	41900		07:27		\/	07:36
	06:25	n Deursch	08:13	08:35	v Dovreb.	07:58		08:05	n Int. (K		07:27			
		n Dovreb. 09:25	08:17	v Dovreb.	57007	55005			08:55	08:57	08:53		\sim	
	()	09:25	57005	v Dovieb.	57007			09:55	v Int. (K)	B) 419102	58005		09:50	
	H	v Dovreb.	57005	57009	10:13	n Bergen 10:05	09:58		41910	,	56005		v Stavanger	10:25
		v Dovieb.	n Dovreb.	57005	10:13	10:05	09:58	v Bergen 55007	10:35	10:55	n Stavanger	10:19	v Slavanger	v Int. (ØVB)
	+	57011	11:25	11:13	10.17		55001	55007	11:07	10.55	11:00	10.15	58007	
		5/011	11:35	11:17	57007	11:55	n Bergen	11:32	v Int. (K)		11:50	58001	50007	419525
		12:13	v Dovreb.	11.17	57007	v Bergen	12:05	11:58	41900		v Stavanger		12:10	419323
	12:35	12:13	V DOVICO.	57009	n Dovreb.	55009	12.05	11.56	12:44	′ / 	v Stavanger	n Stavanger	12:10	12:45
	v Dovreb.	12.17	57013	07000	13:25	55005		55007	12:48		58009	13:00	12.10	12:45
		57011	0.0.0	n Dovreb.	13:35	13:32	13:55	n Bergen	41900		00000	13:50	58007	12.40
	57015	0/0/1	14:13	14:25	v Dovreb.	10.02	v Bergen	14:05	n Int. (K)		13.18	v Stavanger		419525
		n Dovreb.	14:17	14:35			55011	14.00	14:55				n Stavanger	
	15:13	15:25		v Dovreb.	57017				14.55			58011	15:00	n Int. (ØVB)
	15:17	15:35	57013				15:32	15:55						15:35
		v Dovreb.		57019	16:13		15:58	v Bergen				16:10		
	57015		n Dovreb.		16:17		. 0.00	55013				16:10		
		57021	17:25	17:13			55011	00010	16:57			_	17:25	
	n Dovreb.		17:35	17:17	57017		n Bergen	17:32	41910			58011	v Int. (ØVB)	
$\overline{}$	18:25	18:13	v Dovreb.				18:05	17:58	n Int. (K				- ()	17:54
18:35		18:17		57019	n Dovreb.				18:55			n Stavanger	419527	
v Dovreb.			57023		19:25			55013	19:07	18:57	19:02	19:00		419624
		57021		n Dovreb.	19:35	•	19:55	n Bergen	v Int. (K)	B) 419114		19:50	19:45	
57025			20:13	20:25	v Dovreb.	19:58	v Bergen	20:05	41901		58010	v Stavanger	19:45	n Int. (ØVB)
	20:35	n Dovreb.	20:17				55015		20:44	20:55	n Stavanger			20:35
21:13	v Dovreb.	21:25			57027	55009			20:48	21:07	21:00	58013	419527	
21:17		\frown	57023	21:35		n Bergen	21:32	21:55	41901	v Int. (KVB)				
	57029			v Dovreb.	22:13	22:05	21:58	v Bergen	n Int. (K	B) 419113		22:10	n Int. (ØVB)	21:54
57025		/	n Dovreb.		22:17			55017	22:55	22:35	$\langle \rangle$	22:10	22:35	
	23:13		23:25	57031			55015		23:07					419622
n Dovreb.	23:17	1	23:35		57027	23:55	n Bergen	23:32	v Int. (K)	B)	1	58013	23:50	

Track C107 is occupied only up to 25%, C32 up to 45% and C42 up to 60%. There are some more gaps in further tracks.


These tracks will serve as buffer inside the loading modules in case of delays.

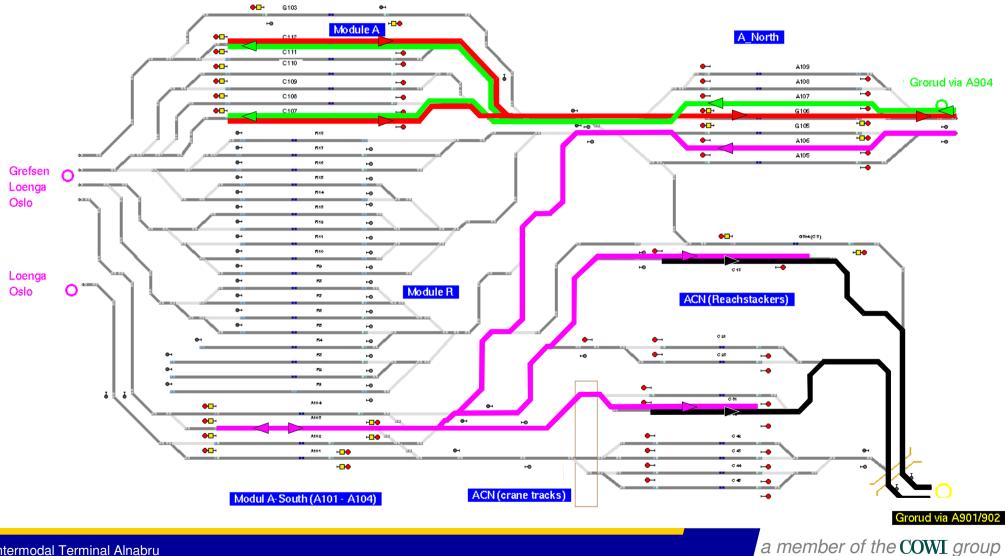
a member of the COWI group

Standard routes into the terminal

Trains from and to Grefsen

a member of the COWI group

Standard routes into the terminal



Standard routes into the terminal

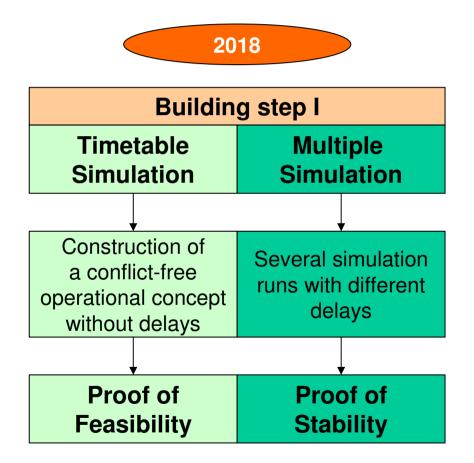
Trains from and to the North

Intermodal Terminal Alnabru

ETC Transport Consultants GmbH 🖀 +49 30 - 25 46 5 - 326 e-mail: daniel.kerwien@etc-consult.de web: www.etc-consult.de

Number of shunting movements

The simulation model comprises 16 different types of **regular shunting movements** in addition to the train movements. It includes

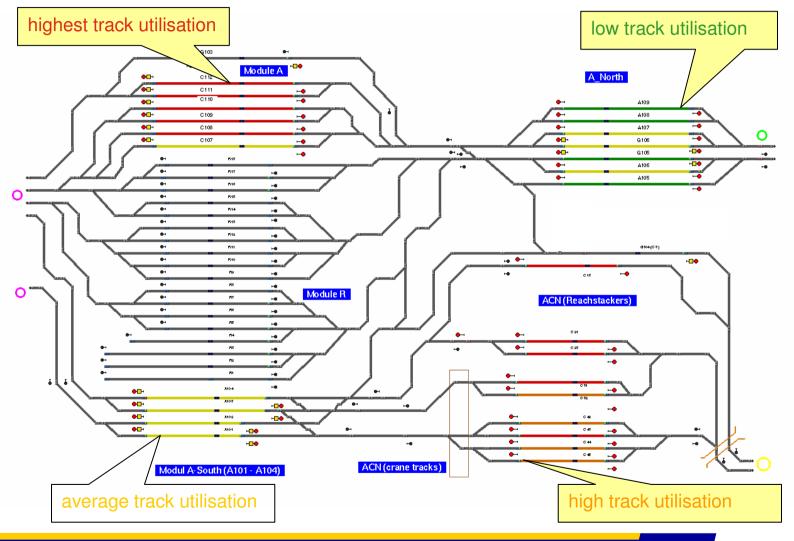

- shunting of e-locos and shunting locos to and from the trains
- shunting of trains to and from Module R
- shunting of trainsets with damaged wagons and
- movements from and to the loco depot.

The total number of **regular shunting** movements is **175**.

The total number of **special shunting** movements due to trainsets with damaged wagons is **44**.

Simulation Building step I

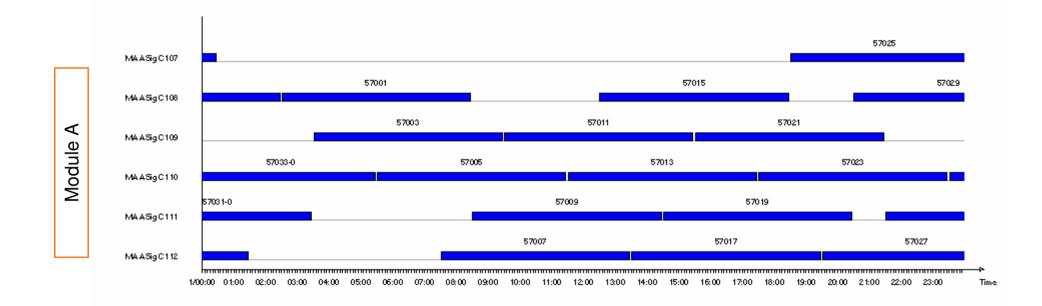
Intermodal Terminal Alnabru


a member of the COWI group

ETC Transport Consultants GmbH 🖀 +49 30 - 25 46 5 - 326 e-mail: daniel.kerwien@etc-consult.de web: www.etc-consult.de

Results of the timetable simulation

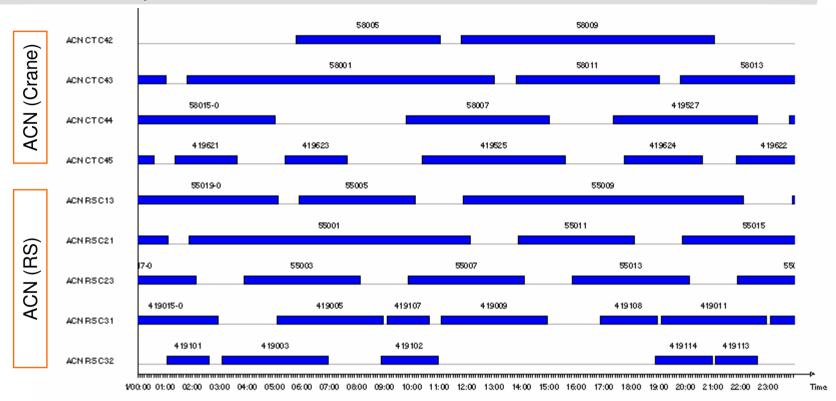
Average track occupation time (train movements only)


Intermodal Terminal Alnabru

a member of the COWI group

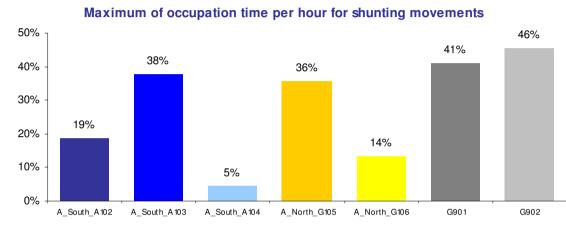
ETC Transport Consultants GmbH 🖀 +49 30 - 25 46 5 - 326 e-mail: daniel.kerwien@etc-consult.de web: www.etc-consult.de

Results of the timetable simulation track occupation time Module A



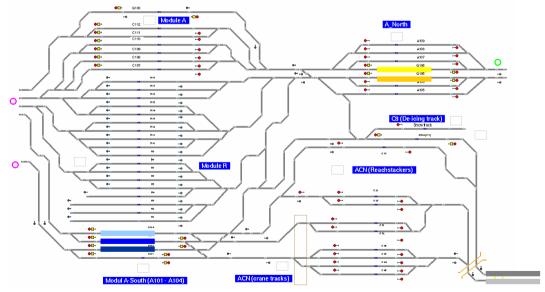
All tracks are in use in timetable simulation. Loading track C107 is occupied only up to 25 % and will serve as buffer in multiple simulation (with delays).

Results of the timetable simulation track occupation time ACN



All loading tracks are in use in the timetable simulation. But there are reserve capacities, mainly in tracks C32 and C42, as buffer for the timetable simulation.

Results of the timetable simulation Shunting movements



Shunting movements do not increase the track occupation of loading and arrival tracks during arrivals, since these tracks are already occupied, when a shunting loco enters.

Therefore shunting movements only **influence** the **track occupation of** A-tracks, when they are used for other purposes.

Concerning shunting movements tracks **G901 and G902** are the **most occupied tracks** in the whole terminal, followed by the departure tracks in A-South and A-North, which bear all necessary shunting movements to keep the arrival tracks clear for incoming trains.

a member of the COWI group

Results of the timetable simulation

First Conclusions:

- 1. The **timetable simulation** shows that the construction of a **conflict-free operational concept is possible** with the chosen infrastructure layout.
- 2. Some tracks in the loading modules are not completely occupied in the timetable simulation without delays.
- 3. The **multiple simulation** has to **prove** if the capacity of the loading tracks is **sufficient**.

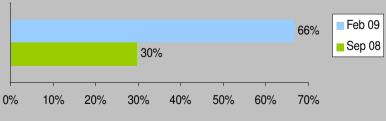
Multiple simulation Introduction

The aim of the multiple simulation is to **prove the stability** of the operational program by implementing realistic delays.

- Based on delay data of four week periods, delivered by JBV, two exponential delay distributions were built (s. following sheet).
- The relationship between delays of incoming (initial delay) and outgoing trains is defining the **operation stability**. A network is considered as stable, if the initial delays remain in approximately alike and not increase strongly.
- The multiple simulation comprises 20 runs. In every simulation run different trains are delayed.
- The number of simulation runs increases the statistical relevance of the simulation.
- The 20 runs can be interpreted as 20 operating days or almost three weeks of peak days.

Intermodal Terminal Alnabru

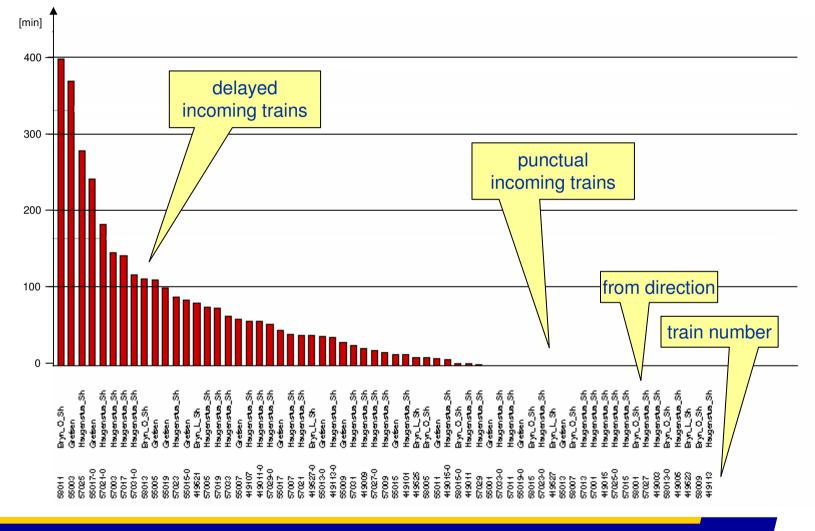

Results of the multiple simulation Parameters for distribution of delays



maximum of initial train delay (upper threshold)

mean initial delay (per delayed train)

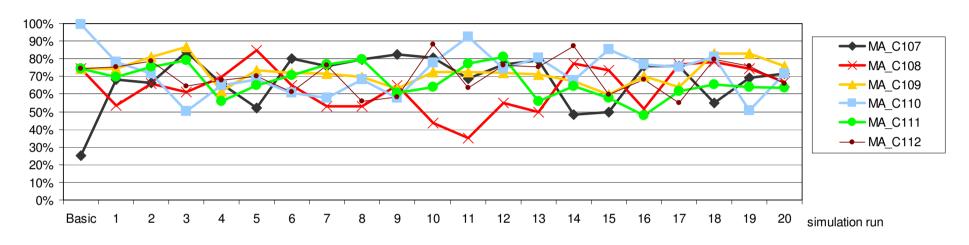
percentage of delayed trains


For the multiple simulation a typical negative exponential distribution was used. With help of a "random generator" an individual initial delay for each train was defined, which is based on the average delay.

The multiple simulation was executed with the winter delay distribution. Every positive simulation result is valid also for the summer delay distribution.

Results of the multiple simulation

Typical distribution of initial winter delay (1 out of 20)


Intermodal Terminal Alnabru

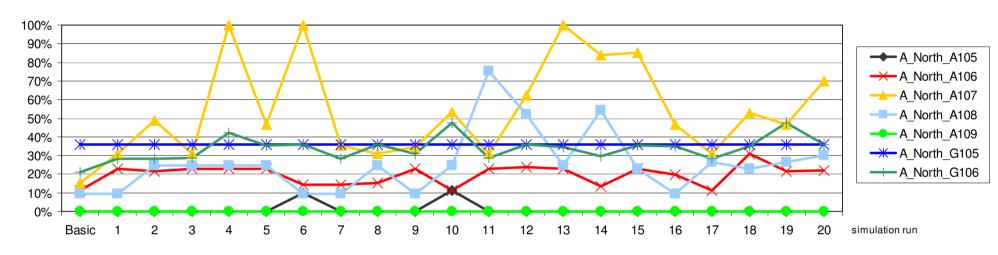
a member of the COWI group

ETC Transport Consultants GmbH 🖀 +49 30 - 25 46 5 - 326 e-mail: daniel.kerwien@etc-consult.de web: www.etc-consult.de

Occupation times loading tracks Module A Winter delay

Average occupation time in Module A (winter delay)

High and volatile occupation of all six loading tracks due to the fact that following trains are being directed to other loading tracks in case of lengthy winter delays.


In contrast to the timetable simulation (Basic, 97%) loading track **C110 (light blue) is now less occupied** in most simulation runs, because some of the trains were directed to other tracks and have used especially the **spare capacity of C107 (black)**.

The total occupation of Module A is still not critical.

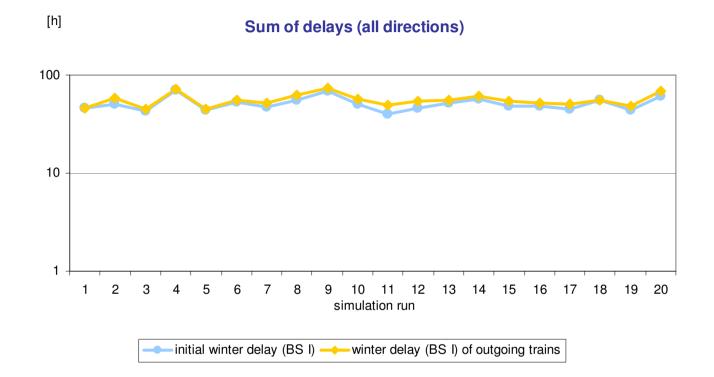
a member of the COWI group

Occupation times tracks Module A-North Winter delay

Maximum occupation time per hour in Module A-North (Winter delay)

Of course module **A-North is slightly over-dimensioned in BS1**, because it has to serve fewer trains and only one instead of two six-track loading modules in the final layout.

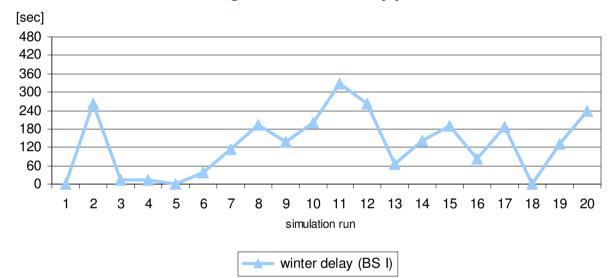
But in BS1 it has to serve as a buffer for the tight preliminary A-South as mentioned above.


A-North is **also an alternative for incoming trains from the north to ACN**, because the Grorud tracks are already too occupied (see next sheet).

Therefore a decrease in number of tracks for A-North is not recommended.

Intermodal Terminal Alnabru

Sum of incoming (initial) and outgoing winter delays


The diagram shows the sum of incoming (initial) and outgoing winter delays for the directions Haugenstua, Grefsen und Bryn, measured in hours.

The sum and the distribution of delays are different for each simulation run.

Intermodal Terminal Alnabru

Increase of delay between incoming and outgoing trains

Average increase of delay per train

The stability of the operational concept can be described with the **average increase of delay per train**. There is **one peak with over five minutes** and some **other peaks with three to four minutes**. But most of the simulation runs with winter delay produce an average increase of **less than 180 seconds**. These figures show that **rail operations** in the terminal **can be kept running even with delayed incoming trains**.

In particular the **loading tracks have sufficient capacity**, so obstacles and **additional delays** occur **only in other parts** of the terminal.

Intermodal Terminal Alnabru

Results of the multiple simulation

First Conclusions:

- 1. The terminal is working, even with initial delays of the incoming trains.
- 2. The **loading modules** have still **enough capacity**, although all loading tracks are occupied at some point.
- 3. Module A-South is occupied to a grade where the operator has to react flexibly to take in all arriving trains into the terminal immediately. Reserve capacity is available in the arrival tracks of module A-North.
- 4. The **double track solution** for the Grorud track is **necessary** for fluent operation, even with reduced regular train movement to save capacity for shunting movements.
- 5. Module A-North looks over-dimensioned at first. But it is necessary as a capacity reserve for A-South and the Grorud tracks in case of too much delays.

Intermodal Terminal Alnabru

Conclusions and recommendations

The track layout is capable to cope with 1.5 Mio. TEU

- 1. The chosen track layout is **capable** of coping with the expected cargo volume.
- 2. The simulation with 46 trainpairs shows a **peak day**. If the terminal can handle this amount of cargo per day, it will have **enough capacity for the annual amount**.

The operational concept is robust

1. The simulation shows that **initial delays do not lead to significant increased delays** of outgoing trains and the rail operation inside the terminal is **stable**.

The terminal is dimensioned properly and not oversized

- **1.All loading tracks are occupied at some point** during a peak day with winter delays. Therefore all of these loading tracks are **necessary**.
- 2. The arrival tracks in Module A-South are occupied to a grade where queueing outside the terminal is likely, if the operator does not redirect trains from the south to A-North last-minute. Some of the simulation runs show a maximum occupation of certain A-tracks beyond the limit of sufficient operational quality.
- **3. Reserve capacity** is available in the southern arrival tracks of **Module A-North** and will be used to relieve the other A-tracks in case of big delays.

Intermodal Terminal Alnabru