

HOLISTIC CAPACITY OF RAIL NETWORKS -EXPOSING ASSET DEFICIENCIES IN A COMPLEX SYSTEM

Trevor Bagnall CPEng MIEAust RPEQ Principal Engineer – High Voltage Systems Queensland Rail

Plateway

Ian Imrie CPEng FIEAust, FAICD Technical & Commercial Analyst Plateway Pty. Limited

Dipl.-Ing. (FH) Martin Jacob OpenPowerNet Product Manager Institut für Bahntechnik GmbH

Holistic – can be defined as:

'Emphasising the importance of the whole and the interdependence of its parts'.

Capacity – can be defined as:

'The practical limit of a rail network to function at defined limits of operational performance'.

All Australasian Railways are under stakeholder pressure to improve services

Improved services may be provided by revised timings and/or increased frequency

Improved services can be provided by new lines to growth areas

Improved services can be provided by new trains with enhanced performance & customer features

The question is:

Can the existing infrastructure support an increased service frequency?

Can the existing infrastructure support additional traffic from new lines?

Can the existing infrastructure support the enhanced performance of new trains?

If the answer to the question/is:

If the answer to the question is: 'No'

If the answer to the question is: 'We do not know'

If the answer to the question is: 'Perhaps'

Plateway

Or even if the answer to the question is: 'Yes, we believe the existing infrastructure is adequate '

How can we prove it?

If additional infrastructure is required : How do we justify it?

SEQ 2031

QueenslandRail

Medium Term Projects

DIAGRAM: SEQ 2031 **INDICATIVE RAIL NETWORK** SOURCE: CONNECTING **SEQ 2031**

11

All of these projects revisit the question Can the existing infrastructure cope?

Queensland Rail decided to remove speculation from the decision making

The approach was to create a scientific basis for examination of all the scenarios from 'do nothing' to 'major project expenditure'

Any examination had to be 'holistic' - a decision in choice of rolling stock could influence subsequent investments in signalling, traction power supply, track etc.

Queensland Rail opted for a solution based on computer modelling

Computer based modelling had the potential to provide process discipline with repeatable outputs and input transparency

Queensland Rail decided to seek bids for suppliers of software that could be used to create a 'holistic' model of the SEQ rail network

PHOTO Roma Street, Southern Main Junction - SOURCE Plateway Archives

An Australian company, **Plateway Pty. Limited** was selected to provide the software based on established software solutions used in international applications

In a somewhat unique approach, Queensland Rail proposed that a 'Proof of Concept' (POC) test be conducted

If the software could be demonstrated to meet test criteria set by Queensland Rail, then Queensland Rail would proceed with an order for the software

If the software did not meet the test criteria then Queensland Rail would not proceed with an order for the software

PHOTO Roma Street, Southern Main Junction - SOURCE Plateway Archives

The challenge was accepted

PHOTO Roma Street, Southern Main Junction - SOURCE Plateway Archives

BELCH

Proof of Concept Test

PHOTO: Roma Street, Western approach adjacent to Feeder Station- SOURCE: Plateway Archives

Queensland Rail devised benchmarks for the Proof of Concept test (POC) based on operations on the Cleveland Line

PHOTO: Roma Street, Western approach adjacent to Feeder Station- SOURCE: Plateway Archives

COvverient Manufactor CO

the set out of the Com

Cubariotta in Here

owidr.Phase

MCierary

Eligina

172.700

Sunshine

Plateway Coast and the factor (Second) Combating Charaktered live and the second has been Altrain line (Thursday) Geht Cenatilized Ellistoniate Contraction in the second station 🛄 Charutabarough (Opent for appecial elverite crity) Nerrisor-Calcolice railing **The Cleveland Line** Hall totan -Phone test int no illing -> Englis Airstan-Wythetawa radina CO Comudity sindury We welchold account 121 Assets) wheekhold acces Official Colub-The E Morth Bound Ch. mari (This card) C. Dim **DIAGRAM: SEQ EXISTING** CESser HI Other (Chines CHEN Classical A **TRANSLINK RAIL** COLUMN TWO IS NOT (Childente) **NETWORK** · Martinian 32.3kms from • The order of the SOURCE: TRANSLINK 111111-1410 Branni 2010/2011 ANNUAL REPORT OWNER branch datum at he dame bern 17 05 Wymum North Harrison minfi Park Road rania ELE Wymum Central 🖓 🛄 kin bana Cantral MartyCIT 111 To expection on a Lon Chill Marningside E mailde DE man Park t. **Double track Park** 117 Eat. lacksquare**EXCISION Instan Pr** Corparoo 🖓 🛄 Comistor Circlascoptly Cieve land (D) Coorninger Ochime **Cleveland line Road to Manly** CD Gracovilla Conton Park G2.3km Citherward AT Fairfait C C or in the Eliteron Lowbard 6Clowy Dana C (Dward **Single track Manly** Othelas OFsermate Tadbart 1 Thursday COLUMN TWO IS NOT Citionation to Cleveland Charten Werderin Lands Drimeau CTU Beenleich line off. Them Gold internet a TOTAL Coast Merang Elite Clatter carrents (1) stin-

Analy Labor (1971)

LIFE

Lytton Junction Feeder Station

Lytton Junction Feeder Station (LJFS) comprises 2 x 15MVA Transformers (T5 & T6)

SOURCE: QUEENSLAND RAIL, Trevor Bagnall

For the POC test Transformer LJFS – T5 supplied the double track section from Lytton Junction to Park Road

Transformer LJFS – T6 supplied the double track section from Lytton Junction to Manly and the single track section from Manly to Cleveland

For the POC test, instrumentation was fitted at LJFS and at the electrical section extremities at Park Road and Cleveland

Disympte Nexts Q Sunshine Coast line # 72.78m

Valuation

Train operations on the Cleveland Line were monitored using data generated by the signalling system

. ex

note Train Overview Application v8.4.0 - Default Viewport 1.07%

ateway

CAUTION: STOA is an information system only. The information deplayed on STOA must not be used for ante-working purpose

Train positions were identified to track circuit level from the

input to the RTOA system

POC Benchmarks

Data Transfer Single Train Runs Peak Hour operations

Plateway

POC Benchmarks 1. Data Transfer

Demonstrate that the proposed software could exchange data electronically with the existing Queensland Rail Simulation systems

Plateway

POC Benchmarks 1. Data Transfer

The data transfer capability from the existing Queensland Rail simulation tools for Timetables and Infrastructure was demonstrated in the first days of the project

POC Benchmarks 2. Single Train Runs

Benchmark Summary

Result

Operate instrumented test trains from Park Road to Cleveland & return (approx. 3 return trips with the first trip for calibration purposes)

Maximum variation between actual and simulated train run times to be less than 2 minutes

The simulated energy for each single train run would have a variation of less than 8% of that measured at Lytton Junction Feeder Station busbars.

POC Benchmarks 2. Single Train Runs

Benchmark Summary

Result

Operate instrumented test trains from Park Road to Cleveland & return (approx. 3 return trips with the first trip for calibration purposes)

Maximum variation between actual and simulated train run times to be less than 2 minutes

The simulated energy for each single train run would have a variation of less than 8% of that measured at Lytton Junction Feeder Station busbars.

POC Benchmarks 2. Single Train Runs

Benchmark Summary

Result

Operate instrumented test trains from Park Road to Cleveland & return (approx. 3 return trips with the first trip for calibration purposes)

Maximum variation between actual and simulated train run times to be less than 2 minutes

The simulated energy for each single train run would have a variation of less than 8% of that measured at Lytton Junction Feeder Station busbars.

POC Benchmarks 3. Peak Hour operations

Benchmark Summary

Result

5 days of morning peak (6am to 10am) on the Cleveland Line

Train Graph used for comparison between actual and simulated train running for each of the 5 days.

The simulated energy for each day will have a variation of less than 10% of that measured at Lytton Junction Feeder Station busbars.

POC Benchmarks 3. Peak Hour operations

Benchmark Summary

Result

5 days of morning peak (6am to 10am) on the Cleveland Line

Train Graph used for comparison between actual and simulated train running for each of the 5 days.

The simulated energy for each day will have a variation of less than 10% of that measured at Lytton Junction Feeder Station busbars.

POC Benchmarks 3. Peak Hour operations

Benchmark Summary

Result

5 days of morning peak (6am to 10am) on the Cleveland Line

Train Graph used for comparison between actual and simulated train running for each of the 5 days.

The simulated energy for each day will have a variation of less than 10% of that measured at Lytton Junction Feeder Station busbars.

The Software solution chosen by Queensland Rail for the holistic Rail Network Simulation

Input

Rolling Stock

Infrastructure

Course ID	Station	Arrival	Departure	Walt
IC 5000	IGG	HH3ML90	08:20:00	0
IC 5000	YPS	06:24:00	08:25:00	60
IC 5000	08E	HH3MLSS	06:31:00	30
IC 5000	AAT	HH3ML99	06:38:00	60
IC 5000	GRS	HH3MLSS	HHMM:SS	0
IC 5000	PEW	HH3ML99	HHMM:99	0
IC 5000	WED	06:55:00	HH:VM:00	60

Timetable

Input

Rolling Stock

Infrastructure

Course ID	Station	Arrival	Departure	Wals
IC 5000	1GG	HHJMM 98	08:20:00	0
IC 5000	YPS	06:24:00	00:25:00	00
IC 5000	300	HH3MM:SD	06:31:00	30
10 5000	AAT	HH2M3:00	08:38:00	00
IC 5000	GRS	BRIMKHH	HHMM SS	0
IC 5000	PEW	HHMMISS	HHMM:S0	0.
K) 5000	WED	06-55-00	HH:VM:05	60

Timetable

Simulation

Output

Output

Input

The simulation is carried out with the user defined input data. Predefined trains move on a defined track layout to the conditions set by the timetable data and the signalling system.

4/ 100 0	TPD	10,04 (0)	18:271.00	- CE-
IC 5000	0040	444 (107.4.500	00/31 00	30
IC 3000	AAT.	10000	00-11E-00	10
IC 3005	10786	1010010-000	HHADERS	
IC 0000	75W	HHURMAN	HANDER	0
(C (m))	WEE	25.12.00	HIGH MALES	10 ·

0

8

Timetable

Statistics

首 庄 洪 曼 白

COCCOCCCO [] [] [] COCCCCCCC [] []

Input

The simulation is carried out with the user defined input data. Predefined trains move on a defined track layout to the conditions set by the timetable data and the

signalling system.

1. IVVI	Contract	TTPL II III III IIII		
4/ 100 0	TPS	10:04:00	18:271.00	-02-
IC 5000	0040	1010 01210 0221	00/3+:00	30
IC 3000	AAT.	10000	00-11E-00	10
IC 3005	10/14	101000	HHADERS	
IC 0000	FEW	HIGHLAND	HANDER	0
(c)(m)	WEE	25.12.00	HIGH MALES	100 ·

Timetable

Simulation

Output

OpenTrack uses a mixed discrete/ continuous simulation process. The simulation process calculates both the continuous numerical solution of the differential motion equations for the vehicles (trains) and the discrete processes of signal status and delay distributions.

Statistics

Input

Output

Timetable

Simulation Sequence per Time Step

Separation of Simulation Tasks

Plug-in

Railway Operation

- Line routing and alignment
- Track layout
- Signalling system
- Train data
- Timetable
- Connecting conditions
- Operating rules

OPEN TRACK

Load Flow and Energy

- Train propulsion data
- Power grid parameter
- Substation arrangement
- Feeder lines and cables
- Catenary system
- Earthing system
- Switch status

OpenPowerNet

Propulsion Technology

Power Supply System

Sequence of Slices

Catenary Arrangement and Conductor Model

Catenary Arrangement and Conductor Model

AR

2

POC Single Train Runs January 30th and 31st 201

Photo Source: Plateway Archives

The single train test runs were after the last and before the first, passenger train service

Photo Source: Plateway Archives

AT

All single train runs were carried out with SMU 260 Class rolling stock in 2 x 3 Car configurations

The SMU 260 class was chosen because of the onboard instrumentation and data logging capability.

<25

The schedule for the test trains were based on normal service times.

Photo Source: Plateway Archives

A.

The Monday night tests were conducted with heavy showers throughout the night

Photo Source: Plateway Archives

4

<25

The Tuesday night tests were conducted with mainly dry track with a light shower prior to our trip on the section from Manly to Cleveland

Photo Source: Plateway Archives

AT

• The Red trace is the Power requested by Open Track

- The Blue trace is the Power from the train data logger
- The Brown trace is the Mechanical Power (for Traction) delivered by OpenPowerNet

- The Blue trace is the Power from the train data logger
- The Purple trace is the Electrical Power (Traction + 'Hotel') delivered by OpenPowerNet

Single Train Run Results

NOV CONTRACTOR	Benchmark Summary	Result
	Operate instrumented test trains from Park Road to Cleveland & return (approx. 3 return trips with the first trip for calibration purposes)	H816 – All stations PKR to CNV (wet) H017 – All stations CNV to MNY then express to PKR (wet) H818 – Express PKR to MNY then all stations to CNV (dry) H019 – All stations CNV to PKR (dry)
and the second s	Maximum variation between actual and simulated train run times to be less than 2 minutes	H816 – 23s maximum deviation H017 – 22s maximum variation H818 – 14s maximum variation H019 – 17s maximum variation
A DATE AND A DATE OF A	The simulated energy for each single train run would have a variation of less than 8% of that measured at Lytton Junction Feeder Station busbars.	H816 – 3.9% variation H017 – Not available H818 – 0.1% variation H019 – 4.5% variation

Single Train Run Results

Benchmark Summary

Plateway

Result

All measured energy readings for the single train runs were taken from the train instrumentation as the instrumentation at Lytton Junction Feeder Station could not discriminate between consumed and regenerated (during braking) energy.

The Data Logger readings for Run H017 were not available due to problems associated with transferring the energy readings from the train computer

The simulated energy for each single train run would have a variation of less than 8% of that measured at Lytton Junction Feeder Station busbars.

H816 – 3.9% variation H017 – Not available H818 – 0.1% variation H019 – 4.5% variation

Single Train Run Results

N. 19 19	Benchmark Summary	Result	
にないいたいというというないが	Operate instrumented test trains from Park Road to Cleveland & return (approx. 3 return trips with the first trip for calibration purposes)	H816 – All stations PKR to CNV (wet) H017 – All stations PKR to CNV (wet) / to MNY then express to I H818 – Exp stations to CNV (cry) H019 – All stations CNV to PKR (dry)	
144 15 19	Maximum variation between actual and simulated train run times to be less than 2 minutes	H816 – 23s r eviation H017 – 22s r ariation H818 – 14s r ariation H019 – 17s r ariation	
DI BANK / BANK D	The simulated energy for each single train run would have a variation of less than 8% of that measured at Lytton Junction Feeder Station busbars.	H816 – 3.9% H017 – Not a H818 – 0.1% H019 – 4.5%	

Simulating I Peak Hour Operations

With the single train test runs, all trains were formed with the same generation of rolling stock i.e. SMU260 class

With peak hour operations, the train consists forming scheduled services varied on a daily basis

Photo Source: Queensland Rail – Network Picture Archive

92

From an electric traction perspective, trains on the Cleveland Line could be classified in 4 discrete groups

The first group are trains with **Regenerative braking formed by SMU or IMU units** These trains are shown in Blue on the **Train Diagram**

The energy used to brake a train can be recovered as Electrical energy if the train is fitted with Regenerative braking

Photo Source: Queensland Rail – Network Picture Archive

95

The second group are trains with Dynamic braking formed by EMU 8 motor units similar to the EMU51 shown in the slide background

These trains are shown in Orange on the Train Diagram

The energy used to brake a train is dissipated as heat if the train is fitted with Dynamic braking

The third group are trains with Dynamic braking formed by EMU 6 motor units

These trains are shown in Green on the Train Diagram

The fourth group are trains with Dynamic braking formed by An EMU 6 motor 3 car unit + An EMU 8 motor 3 car unit

These trains are shown in Purple on the Train Diagram

	Monday	Tuesday	Wednesday	Thursday	Friday
EMU 6M	1	4	2	4	2
EMU 8M	15	17	11	18	15
EMU 6M + 8M	6	1	8	7	0
EMU Subtotal	22	22	21	29	17
Dynamic Brake %	52%	52%	50%	69%	40%
SMU/IMU	20	20	21	13	25
Regenerative Brake %	48%	48%	50%	31%	60%
Total	42	42	42	42	42

POC 5 Day Test Cleveland Line Morning Peak train composition

Another variable that can influence train performance is driving style

The timetable is the same for each day but the train consist and the allocated train crew may vary

Variations in passenger behaviour between a wet and dry day and allowance for 'incidents' mean that the timetable has some capacity to absorb disturbances

This also means that the train crew have some capacity to vary the train performance to match operating reality

The network simulator can calculate the behaviour of each train based on the laws of physics Actual operational reality and thus the simulator, must also replicate the variability of human behaviour

The simulator settings that reflect reality can only be made after a close study of actual operations

Some of the settings can be made based on measured data such as passenger loading per station and per service

Passenger loadings will influence the mass of the train and hence the traction power demand depending on the time of day, the catchment of each station and the journey profile

Plateway

These are some of the factors that were used in a calibration process to set the model variables

Plateway

For each of the 5 days a train diagram was produced based on the actual operations, for the morning peak

Signal: BS038 - Cleveland

Solid Lines simulated operations, Dashed lines actual operations from RTOA system

Signal: BS038 - Cleveland

In addition to the train operation data, the co-simulation generates data relevant to the traction power supply

PHOTO: Lytton Junction Feeder Station SOURCE: QUEENSLAND RAIL, Trevor Bagnall

Pantograph Voltage, QR POC, thursday peak (AgAg424Afe000) Line Cleveland, km 0+200 to 32+400, 06:00:00.0 - 10:00:00.0

Institut für Bahntechnik GmbH

The holistic simulation also provides other possibilities to examine network performance under 'normal' or 'disturbed' operating conditions

Train Graph with indicated Pantograph Voltage QR POC, thursday peak (AgAg424Afe000)

Train Graph with indicated Pantograph Voltage QR POC, thursday peak (AgAg424Afe000)

Train Graph with indicated Pantograph Voltage QR POC, thursday peak (AgAg424Afe000)

Train Graph with indicated Pantograph Voltage QR POC, thursday peak (AgAg424Afe000) 35+,000 **CVN ORO** Train 1M03 2 x 3 Car 8 30+ **WPY** Motor EMU Train 1816 1 x 3 Car 8 Motor **BDE** 25+200 + 1 x 3 Car 6 Motor EMU **TNS** LOT MNY **WNM WNC WNH** LDM **HMM** MJE **CNQ** MGS **NPK** CRO **BRD** 0+000 07:00:00 06:00:00 06:10:00 06:20:00 06:30:00 06:40:00 06:50:00 • 0 V ... 22500 V · 22500 V ... 25000 V • 25000 V ... 26394 V 26394 V ... 27500 V • 27500 V ... 29000 V

Train Graph with indicated Pantograph Voltage QR POC, thursday peak (AgAg424Afe000) 35+,000 **CVN ORO** Train 1M03 2 x 3 Car 8 30+ **WPY Motor EMU** Train 1816 1 🖌 3 Car 8 Motor **BDE** 25+200 + 1 x 3 Car 6 Motor EMU TNS Train 1A15 2 x 3 Car 8 LOT **MNY Motor SMU WNM WNC WNH** LDM **HMM** MJE **CNQ** MGS **NPK CRO BRD** 0+000 07:00:00 06:00:00 06:10:00 06:20:00 06:30:00 06:40:00 06:50:00 • 0 V ... 22500 V · 22500 V ... 25000 V • 25000 V ... 26394 V 26394 V ... 27500 V 27500 V ... 29000 V

Train Velocity against Simulation Time in Seconds

Magnetic Flux Density, QR POC, thursday peak (AgAg424Afe000) Line Cleveland, km 15+550, 06:26:00.0

RW = Return Wire

LR = Left Rail

RR = Right Rail

Benchmark Summary	Result
5 days of morning peak (6am to 10am) on the Cleveland Line	Co – simulation between OpenTrack and OpenPowerNet conducted for each of the 5 days of morning peak operations. Outputs tabled to Queensland Rail
Train Graph used for comparison between actual and simulated train running for each of the 5 days.	Train graphs produced for each of the 5 days showing the simulated against actual operations for the morning peak. Graphs handed to Queensland Rail and compared with actual operations (RTOA)
The simulated energy for each day will have a variation of less than 10% of that measured at Lytton Junction Feeder Station busbars.	The simulated results were handed to Queensland Rail

QueenslandRail Proof of Concept energy consumption at Lytton Junction Feeding Station 30.01.2012 - 03.02.2012 6am-10am Cleveland to Park Road

Benchmark Summary	Result
5 days of morning peak (6am to 10am) on the Cleveland Line	Co – simulation en OpenTrack and OpenPowe icted for each of the 5 days Outputs ta ensland Rail
Train Graph used for comparison between actual and simulated train running for each of the 5 days.	Train graphs produced for each of the 5 days show and a subscription and against actual ope to the morning peak. Graphs have been sland Rail and compared with actual operations (RTOA)
The simulated energy for each day will have a variation of less than 10% of that measured at Lytton Junction Feeder Station busbars.	The simula Queenslan

When Queensland Rail tabled their measured results it was clear that the simulated 'hotel' power i.e. airconditioning, lighting etc. of the trains standing at Cleveland terminus had been overestimated

More realistic values for the 'hotel' power for the standing trains were entered into the model variables and the simulation for each day rerun

This is the revised comparative performance between measured and simulated results

PHOTO: Murarrie Curve – SOURCE: Queensland Rail Trevor Bagnall

Sec. 1