

Use of Simulation to Evaluate Performance of Timetable Concepts

New Timetable for the Oslo-area

Elin Reitan Sven-Jöran Schrader NSB Passenger Trains, Planning & Analysis

Agenda

- Background: The new Oslo-area timetable
- Methodology and analysis
- Project challenges
- Results
- Conclusions

2012 timetable – design process

NSB

New timetable – new opportunities

Previous timetable

- Base structure of the timetable unchanged since 1999
- Known deficiencies in the current timetable
- Few possibilities for adjustments due to single-track lines and central area tunnel

2012 timetable

- Complete timetable recast
- "Once-in-a-decade"-chance to rectify problems and to build in robustness

Main characeristics

- Simplicity
- Evenly spaced trains
- Increased train frequencies

New Timetable Simulation Project

- Joint project between NSB and Jernbaneverket, the infrastructure owner
- Project period August-December 2011
- Largest-scale rail operations modelling project in Norway so far:
 - 850 route-km
 - 150 stations
 - 600 trains (local, long-distance, freight)
- Used OpenTrack-modelling tool
- Compared three different timetables:
 - Previous timetable
 - 1st phase of the new timetable (from Dec 2012)
 - Full implementation (from Dec 2014)

"To which degree is the new timetable concept free of conflicts and sufficiently robust to absorb delays in normal operations?"

Analysis

Timetable conflict analysis

- Single, undisturbed simulation
- Graphical analysis

Comparison of timetable concepts and robustness analysis

- Multiple simulation with delays
- Comparison between the three timetables
- Evaluation criterion: "Average arrival delay per stop"
 - Good base for comparison
 - Passenger-related
- Analyses for the entire Oslo-region and for sub-areas
- Development of delays over time (moving average)

Modelling Variation in Station Dwell Times

- More realistic planned dwell times are an important feature in the new timetable
- Use of observed dwell time distributions in the simulation
- OpenTrack could only model dwell time delays of planned departure time
- Alternative modelling methodology used a large constant and a small variable dwell time component
- Effect of extended dwell times is not fully represented in simulation results
- OpenTrack-functionality has since been extended to include dwell time variation

Dispatching

- Simulation with delays and perturbations requires dispatching decisions
- Unusual conditions in Norway:
 - High proportion of single-track lines
 - Local and regional trains have higher priority than freight and long-distance trains
- Typical problems:
 - Route reservation
 - Overtaking
 - Deadlocks
- Modelling solutions:
 - Connections
 - Artificial stops
 - Through-signalling ("reserve with previous")
 - Zero-speed signal aspect for long freight trains
- Simplifications result in a higher number of successful runs acceptable for analysis

Running the Simulations: Use of Scripts

- To obtain statistical reliable results, we needed to run a large amount of simulations
 - 5 different delay levels; 50 simulations per delay level per timetable (in total ca. 700 single simulation runs, 8700 hours of train traffic, 770 000 trains)
- One simulation run needed 30- 40 min to finish
 - Possible to start multiple simulation runs, but with the size of our model OpenTrack could not handle more than 3-4 simulation runs without crashing
- To be able to complete the project we worked together with OpenTrack Ltd. to find a way to automate the simulations. A script functionality for OpenTrack was developed

Running the Simulations: Use of Scripts

Simulation Results (Example)

Delay scenario «High»

Conclusions from the Simulations – Experiences in Operation

- Conclusions from the simulations
 - The new Oslo-area timetable are operationally feasible
 - Overall lower delays than previous timetable
 - Improved robustness
- Experiences so far
 - The transition to the new timetable went well
 - More realistic station dwell times gives better punctuality (especially for innersuburban trains)
 - Other problems have caused delays too early to evaluate the overall effects of the new timetable

Conclusions

- Simulation can produce quantitative measures to assess punctuality and robustness of different timetable concepts
- Running large models is difficult, but:
- Large models are necessary to assess network effects of changes in larger areas
- Results are very sensitive to the use of different dispatching solutions or unresolved dispatching problems
- Good cooperation with OpenTrack Ltd. contributed to successful completion of the project, especially with respect to script-functionality