

Assessment of operational Feasibility

Dutch Network, Timetable 2014 and 2017

David Koopman 12 june 2015

Outline

- 1. Introduction
- 2. The Netherlands model (NL model)
- 3. Assessing operational feasibility of NL
- 4. Results
- Next steps
- 6. Conclusion

Introduction

David Koopman MSc.

Infrastructure and timetable planning

- Customers
 - ProRail (Dutch infrastructure manger)
 - NS (Dutch Railways) and other operators
 - Ministry of Infrastructure and Environment
 - Provinces

Growth of infrastructure Model

NL key facts (ProRail)

- 7030 km track
- 7151 Switches
- 11,944 signals
- 350 trains simultaneously

History

- Start 2005
- 2008 CoreNet
- 2009 Asd-Ehv
- 2012 North East
- 2013 NL Complete

Facts and Numbers

7 infrastructure files

Track Kilometers	8164 km
Switches	6410
Stations/Services	545
Main Signals	9308
Instruments	6093
Double Vertices	38616
Edges	41277
Routes	11151
Paths	2752
Itineraries	707

Simulation: 06:00 - 13:00,

- step 2,0s, 2173 trains, 360 trains simultaneously
- 23 min timetable timetable statistics only
- 49 min with 46 train diagrams and output on.

Assessing operational feasibility

Why a microscopic model with OpenTrack?

- Current timetable planning tools limited
- Focus on planning without conflicts
- Significant timetable change in 2017 planned
- Complete NL model available
- Computation time has decreased
- Modeling time has decreased

Old timetable planning process

Old approach

- Local headway times according to rules Running times not accurate
- Feedback in planning process is limited. Real proof of the pudding is in the operation

Current planning process with OpenTrack

New ProRail/NS/RHDHV approach

- Take into account all constraints from trains, infrastructure and timetable
- Check on nationwide feasibility and stability in every planning step
- Stable and safe base for operation
- Less start-up problems when timetable is implemented

Assessing operational feasibility of NL

How?

- Deterministic (First step)
- 2014 Day
- 2017 Hour pattern
- Modeling of running time variation with extra slack according to planning rules (passenger trains):
 - 7,5% running time slack compared to the 10th percentile train
 - +1 minute additional release time
- The output creates understanding of the conflicts in the timetable for planners

Royal HaskoningDHV

- Planning issues
- Train diagrams
- Delay lists
- Conflicts
- Resulting secondary delays

ProRail/NS

- Asses the quality of the planned timetable based on these outputs and expert judgement.
- Uses the quality assessment for decision-making
- Improves all the weak spots in the timetable based on these outputs

Planning issues

When modeling we encountered and solved these issues

- Track usage
- Route usage
- Shapeshifting trains
- Use of non existing routes
- Infrastructure constraints

46 Train diagrams

Amsterdam Centraal - Den Haag Centraal

Conflict example

Prio trity	Train 1	Train 2	Station/ Junction	Туре	Time	Delay train 1 [s]	Delay train 2 [s]	Head way norm [s]	Headway planned [s]	Headway measured simulation [s]
1	B1600-6	B11400-10	Amf	Stop at Signal	8:54:58	-86	-4	180	0	158
2	AC6000-5	BD3200-12	Ht	Braking for Signal	9:54:42	82	52	180	0	154
3	AC4700-5	B2100-10	Ledn	Braking for Route	8:43:34	144	16	180	0	138

Stop at signal geographical example

Conflict scatterplot example

Next Steps

- Support implementation OpenTrack and model within ProRail
- More frequent checks on planned timetable
- Smaller area's / direct feedback for planner
- Faster checks
- When planning is stable in deterministic version:
 - Prepare model for stochastic simulation
 - Setup a stochastic simulation with TrenoLab

Conclusion

- 10 Years of OpenTrack usage has lead to:
 - 10 years of experience in modeling and maintenance
 - A complete model of the Netherlands
 - 4 licenses (including 64-bit)
 - 10 OpenTrack users
 - Quality control
 - Data processing
- A micro simulation is feasible for a whole network
- Gives useful results
- Conflict detection is possible
- Data processing increases

Contact details

David Koopman (MSc.)
Railway capacity consultant

E: David.Koopman@RHDHV.com

M: +31611315113

Leidseveer 4 PO Box 2202 3500GE Utrecht

Out of office until 8th July: Please contact Rob van Neerrijnen; Rob.van.Neerijnen@RHDHV.com; M: +31615839978

