Assessment of operational Feasibility

Dutch Network, Timetable 2014 and 2017

David Koopman
12 June 2015
Outline

1. Introduction
2. The Netherlands model (NL model)
3. Assessing operational feasibility of NL
4. Results
5. Next steps
6. Conclusion
Introduction

David Koopman MSc.
- Infrastructure and timetable planning

- Customers
 - ProRail (Dutch infrastructure manager)
 - NS (Dutch Railways) and other operators
 - Ministry of Infrastructure and Environment
 - Provinces
Growth of infrastructure Model

NL key facts (ProRail)
- 7030 km track
- 7151 Switches
- 11,944 signals
- 350 trains simultaneously

History
- Start 2005
- 2008 CoreNet
- 2009 Asd-Ehv
- 2012 North East
- 2013 NL Complete
Facts and Numbers

7 infrastructure files

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Kilometers</td>
<td>8164 km</td>
</tr>
<tr>
<td>Switches</td>
<td>6410</td>
</tr>
<tr>
<td>Stations/Services</td>
<td>545</td>
</tr>
<tr>
<td>Main Signals</td>
<td>9308</td>
</tr>
<tr>
<td>Instruments</td>
<td>6093</td>
</tr>
<tr>
<td>Double Vertices</td>
<td>38616</td>
</tr>
<tr>
<td>Edges</td>
<td>41277</td>
</tr>
<tr>
<td>Routes</td>
<td>11151</td>
</tr>
<tr>
<td>Paths</td>
<td>2752</td>
</tr>
<tr>
<td>Itineraries</td>
<td>707</td>
</tr>
</tbody>
</table>

Simulation: 06:00 - 13:00,
- step 2.0s, 2173 trains, 360 trains simultaneously
- 23 min timetable timetable statistics only
- 49 min with 46 train diagrams and output on.
Assessing operational feasibility

Why a microscopic model with OpenTrack?

- Current timetable planning tools limited
- Focus on planning without conflicts
- Significant timetable change in 2017 planned

- Complete NL model available
- Computation time has decreased
- Modeling time has decreased
Old timetable planning process

Old approach
- Local headway times according to rules
- Running times not accurate
- Feedback in planning process is limited. Real proof of the pudding is in the operation
Current planning process with OpenTrack

New ProRail/NS/RHDDHV approach
- Take into account all constraints from trains, infrastructure and timetable
- Check on nationwide feasibility and stability in every planning step
- Stable and safe base for operation
- Less start-up problems when timetable is implemented
Assessing operational feasibility of NL

How?

- Deterministic (First step)
- 2014 – Day
- 2017 – Hour pattern

- Modeling of running time variation with extra slack according to planning rules (passenger trains):
 - 7.5% running time slack compared to the 10th percentile train
 - +1 minute additional release time

- The output creates understanding of the conflicts in the timetable for planners
Results

Royal HaskoningDHV
- Planning issues
- Train diagrams
- Delay lists
- Conflicts
- Resulting secondary delays

ProRail/NS
- Asses the quality of the planned timetable based on these outputs and expert judgement.
- Uses the quality assessment for decision-making
- Improves all the weak spots in the timetable based on these outputs
Results

Planning issues

When modeling we encountered and solved these issues

- Track usage
- Route usage
- Shapeshifting trains
- Use of non existing routes
- Infrastructure constraints
Results

- 46 Train diagrams
Results

- Conflict example

<table>
<thead>
<tr>
<th>Priority</th>
<th>Train 1</th>
<th>Train 2</th>
<th>Station/Junction</th>
<th>Type</th>
<th>Time</th>
<th>Delay train 1 [s]</th>
<th>Delay train 2 [s]</th>
<th>Headway norm [s]</th>
<th>Headway planned [s]</th>
<th>Headway measured simulation [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1600-6</td>
<td>B11400-10</td>
<td>Amf</td>
<td>Stop at Signal</td>
<td>8:54:58</td>
<td>-86</td>
<td>-4</td>
<td>180</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>2</td>
<td>AC6000-5</td>
<td>BD3200-12</td>
<td>Ht</td>
<td>Braking for Signal</td>
<td>9:54:42</td>
<td>82</td>
<td>52</td>
<td>180</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>3</td>
<td>AC4700-5</td>
<td>B2100-10</td>
<td>Ledn</td>
<td>Braking for Route</td>
<td>8:43:34</td>
<td>144</td>
<td>16</td>
<td>180</td>
<td>0</td>
<td>138</td>
</tr>
</tbody>
</table>
Results

Stop at signal geographical example
Results

- Conflict scatterplot example
Next Steps

- Support implementation OpenTrack and model within ProRail
- More frequent checks on planned timetable
- Smaller area’s / direct feedback for planner
- Faster checks
- When planning is stable in deterministic version:
 - Prepare model for stochastic simulation
 - Setup a stochastic simulation with TrenoLab
Conclusion

- 10 Years of OpenTrack usage has lead to:
 - 10 years of experience in modeling and maintenance
 - A complete model of the Netherlands
 - 4 licenses (including 64-bit)
 - 10 OpenTrack users
 - Quality control
 - Data processing
- A micro simulation is feasible for a whole network
- Gives useful results
- Conflict detection is possible
- Data processing increases
Contact details

David Koopman (MSc.)
Railway capacity consultant

E: David.Koopman@RHDHV.com
M: +31611315113

Leidseveer 4
PO Box 2202
3500GE Utrecht

Out of office until 8th July: Please contact Rob van Neerijnen;
Rob.van.Neerijnen@RHDHV.com; M: +31615839978