Capacity Analysis of the Union Station Rail Corridor using Integrated Rail and Pedestrian Simulation

Yishu Pu
MASc Student
Department of Civil Engineering University of Toronto

Presentation Outline

- Introduction
- Railway Capacity Approaches
- Toronto Union Station Rail Corridor
- Data
- Analytical Capacity Methods
- Railway Simulation
- Integrated Rail and Pedestrian Simulation - Nexus
- Scenario Tests and Results
- Conclusion

Introduction

Motivation

- Growing train traffic at existing railway network
- Platform crowding and limited platform space

- Increased train arrivals could affect platform density while extended dwell time could delay train departures
- Whether the infrastructure could support the anticipated service expansion (i.e. RER)
- Comprehensive capacity analysis of a complex station area is necessary to identify the bottleneck

Railway Capacity Approaches

Railway Capacity

Article Name	Author	Year	Type
An analytical approach for the analysis of railway nodes extending the Schwanhäußer's method to railway stations and junctions	De Kort et al.	1999	
UIC Code 406 1st edition Techniques for absolute capacity determination in railways Development of Base Train Equivalents to Standardize Trains for Capacity Analysis	Lai et al.		
Transit Capacity and Quality of Service Manual	Kurdett and Kozan	2004	
A synthetic approach to the evaluation of the carrying capacity of complex railway node	Malavasi et al.	2006	Analytical
A Model, Algorithms and Strategy for Train Pathing	Carey \& Lockwood	2012	
Optimal scheduling of trains on a single line track	Higgins et al.	2013	
A Job-Shop Scheduling Model for the Single-Track Railway	Oliveira and Smith	1995	
Scheduling Problem	International Union of Railways		

- Problem:
- Results could vary largely due to different assumptions
- Few studies compared methods in different categories
- Virtually all dwell time is fixed (TCQSM, 2013)

Pedestrian Movements

- Traditional dwell time modeling
- Boarding/Alighting/Through passengers, Regression models (San \& Masirin, 2016)
- Pedestrian Modelling
- Analytical modelling
- Simulation
- Problem

			Author
Article Name	Year	Simulation	
Pedestrian planning and design	Fruin	1971	
Social force model for pedestrian dynamics	Helbing \& Molnár	1995	
The Flow of Human Crowds	Hughes	2003	
Autonomous Pedestrians	Shao and Terzopoulos	2007	
Pedestrian Simulation Research of Subway	Zhao et al.	2009	Legion
Station in Special Events			
Using Simulation to Analyze Crowd Congestion and Mitigation at Canadian Subway	King et al.	2014	MassMotion
Interchanges			
Use of Agent-Based Crowd Simulation to Investigate the Performance of Large-Scale	Hoy et al.	2016	MassMotion
Intermodal Facilities			

- Traditional dwell time models can not show
 the platform density, or reflect the flow complication due to infrastructure layout
- Transit vehicle arrival/departure time is fixed

Integrated Simulation

- Key assumptions for individual simulators:
-Fixed dwell time
-Fixed train arrival/departure time-
- Current models:
- Rail simulation with mathematical dwell time model (Jiang et al., 2015) (D'Acierno et al., 2017)
- Rail simulation with pedestrian simulation model (Srikukenthiran \& Shalaby, 2017)

Problem Statement

- Few studies compared methods in different categories
- Interactive effects of pedestrian and train movements are not well captured by individual simulator

Study approach

Analytical Capacity Analysis

(TCQSM, Potthoff method, DB method, Compression method)

Railway Simulation

OpenTrack

Railway and Pedestrian Simulation

Nexus Platform - OpenTrack and MassMotion

Case Study

- Toronto Union Station Rail Corridor (USRC)

Union Station Rail Corridor (USRC)

- Built and opened in 1927
- 760,000 square feet of total floor space
- 14 track depots, 23 platforms, 350 m long and 5 m wide on average
- Toronto's transportation hub for GO Transit, VIA Rail and UP Express; as well as TTC
- Canada's busiest transportation facility: 200,000 passengers pass through Union Station on most business day
- 155,000 GO Train passengers and 10,000 bus passengers on a typical business day
- 208 daily GO Train trips
- 43 million annual passengers for GO train and bus
- 20 million annual passengers for TTC
- $\quad 2.4$ million annual passengers for VIA

Scope

- Study time period: 8am to 9am
- One station away on any rail service
- Assume unlimited capacity at yards and through movements at the station
- Focus on maximum number of GO train trips during peak hour

Data

Required Data

- Infrastructure data
- Track layout
- Signal location
- Station layout
- Operational data
- Speed limit
- Train profile and configuration
- Schedule
- Delay data
- Ridership
- Passenger flow

Manual Data Collection

- Train Speed (GPS)
- Commonly-used Train Path Identification (Video Recording)
- Entry Delay at prior stations and Arrival Delay at Union Station (gotracker.ca)

Manual Data Collection

- Platform Staircase Passenger Volume Count
- Passenger Flow Count at Train Door
- Dwell Time

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Analytical Capacity Methods

Analytical Methods

- Transit Capacity and Quality of Service Manual (TCQSM)
- Potthoff method
- Deutsche Bahn (DB) method
- UIC Compression Method

TCQSM

- Min. headway at Mainline
- minimum train separation + operating margin
$t_{c s}=\sqrt{\frac{2\left(L_{t}+d_{e b}\right)}{a+a_{g} G_{0}}}+\frac{L_{t}}{v_{a}}+\left(\frac{1}{f_{b r}}+b\right)\left(\frac{v_{a}}{2\left(d+a_{g} G_{i}\right)}\right)+\frac{\left(a+a_{g} G_{0}\right) l_{v}^{2} t_{o s}^{2}}{2 v_{a}}\left(1-\frac{v_{a}}{v_{\max }}\right)+t_{o s}+t_{j l}+t_{b r}$
$h_{n i}=t_{c s}+t_{o m}$ $h_{n i}=t_{c s}+t_{o m}$
- Min. headway at Station Area
- minimum train separation + critical station dwell time + operating margin

$$
h_{n i}=t_{c s}+t_{d, c r i t}+t_{o m}
$$

- Min. headway at Mainline with switches
- if a train is encountered with a switch blocking when traveling at main line

$$
h_{j}=t_{c s}+\sqrt{\frac{2\left(L_{t}+n \cdot f_{s a} d_{t s}\right)}{a}}+\frac{v_{\max }}{a+d}+t_{s w}+t_{o m}
$$

TCQSM

- TCQSM - Detailed calculation for line capacity, simple junction capacity calculation
- Need for methods calculating node capacity

Potthoff method and Deutsche Bahn (DB) method

- Assume trains could arrive at any instant of an assigned time period with the same probability
- Timetable not required
- Input:
- Identify all possible train paths in a system
- Summarize number of movements concerning each path $\left(n_{i}\right)$

Path	1-I	1-II	1-IV	4-III	4-IV	III-2	IV-2	I-3	II-3
\# of movements	56	55	7	112	8	112	8	56	55

- Matrix of occupancy time for conflicting movements $\left(t_{i j}\right)$

Path	1-I	1-II	1-IV	4-III	4-IV	III-2	IV-2	I-3	II-3	IV-3
1-I	3.8	1.55	0.97	0	0	0	0	0	0	0
1-II	0.9	1.95	0.61	0	0	0	0	0	0	0
1-IV	1.45	1.45	4.03	0	4.21	1.47	0	0	0	0
4-III	0	0	0	1.67	0.61	0	0	0	0	0.61
4-IV	0	0	3.7	1.54	3.44	0	0	0	0	0
III-2	0	0	1.22	1.06	0	1.56	1.56	0	0	0
IV-2	0	0	2.16	0	1.9	2.93	2.93	0	0	0
I-3	2.74	0	0	0	0	0	0	3.17	3.17	3.17
II-3	0	1.2	0	0	0	0	0	1.54	1.54	1.54
IV-3	0	0	2.56	2.74	2.74	0	0	3.17	3.17	3.17

- Priority Matrix (DB method, Optional)

Capacity indicator

- Potthoff method

$$
\frac{B+R}{T} \leq 1(\text { over capacity if bigger than } 1)
$$

B : Total time of occupation
R : Average delay
T : Study period

- Deutsche Bahn (DB) method

$$
\begin{gathered}
L_{z}=\frac{k \cdot P_{b} \cdot x^{2}}{T-x \cdot B}(\text { usually }=0.6) ; \\
x \geq 1(\text { over capacity if smaller than } 1)
\end{gathered}
$$

L_{z} : average number of trains in the waiting queue (to evaluate operation quality)
k : Probability with which the movements relating to the complex node are mutually exclusive
P_{b} : Occupancy time considering priority
x : Scale factor

Union Station Case

- Two complex interlocking areas located at west and east of the station
- Possible combination of routes could add up to 4000
- 30 and 24 identified commonly used train paths for west interlocking and east interlocking areas respectively
- Train paths shared by GO trains, VIA rail trains, and UP Express trains
- Some paths might be affected by the station dwell time

Matrices of occupancy time for conflicting movements

West Interlocking (30 x 30)

East Interlocking (24 x 24)

	Path \#- Excluded	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Path f- Actual	(min)	E1-N1-U03	E1-N1.-V04	E1-N1-U02	E1-N1-U01	E2-N1-U03	E4N11-U03	E3-N1-U03	E3-M11-U05	E3-N1-U02	E3-N1-U04	E4M1.-U02	U013.J-5	U014.4.E5	U012.JL-E5	U012.J.E6	U07-511-E5	U07.511-66	U06.511-5	U06.511-66	U013.J.66	U014.J.E6	E4.S12.0011	U011-512-55	E4-N1.-U04
1	E1-N1-U03	?	2	2	2	7	7	7		2	2	2													2
2	E1-N1-U04	2	7.5	2	2	2	2	2	2	2	7.5	2													7.5
3	E1-N1-U02	2	2	6.5	2	2	2	2	2	6.5	2	6.5													2
4	E1-N1-U01	2	2	2	6.5	2	2	2	2	2	2	2													2
5	E2-N1-003	7	2	2	2	7	7	7	2	2	2	2													2
6	E4N1-U03	7	2	2	2	7	7		2	2	2	2											2		2
7	E3-N1-U03	,	2	2	2	7	7	7	2	2	2	2													2
8	$\mathrm{E}^{\text {E-N1-200 }}$	2.5	2.5	2.5	2.5	2.5	3	2.5	7	2.5	2.5														3
9	E3-N1-U02		2	6.5	2	2	2		2	6.5	2	6.5													2
10	E3-N1-U04	2	7.5	2	2	2	2	2	2	2	7.5	2													7.5
11	E4N1-U02	,	2	6.5	2	2		2	2	6.5	2	6.5											2		2
12	U013.しE5												2	2	2	1.5	2	1.5	2	1.5	2.5	2	0	2	
13	U014.4.E5												2	2.5	2	1.5	2	1.5	2	1.5	1.5	2.5	0	2	
14	U012-JLE5												2	2	2.5	2.5	2	1.5	2	1.5	1.5	1.5	0	2	
15	U012-JLE6												1.5	2	2.5	2.5		2		2	2				
16	U07-511-E5													2	2		2		2	2			1.5	2	
17	U07-511-66												1.5	2	2	2	2	2	2	2	2	2	1.5	1.5	
18	U06.511-E5												2	2	2		2	1.5	2	2			1.5	2	
19	U06.511-66												1.5		2	2	1.5	2	,	2	2	2	1.5	1.5	
20	U013.J.66												2.5	2	2	2		2		2	2.5	2			
21	U014.4.E6												1.5	2.5	2	2		2		2	2	2.5			
22	E4-SL2-U011						1.5					1.5	0	,			1.5	1.5	1.5	1.5			21.5	${ }^{24}$	1.5
${ }_{24}^{23}$		2	7.5	2	2	2	2	2	2	2	7.5	2	1.5	1.5	1.5		1.5	1	1.5	1			0	2	7.5

Potthoff method and Deutsche Bahn method

- Result for at capacity:
- Capacity parameters:
- Potthoff Method:

Potthoff	n_med	T	t_med	B(min)	U20h	Sum of Rij	R(Sum of Rij/n_med)	(B+R)/T
W.I.	3.34	60	2.78	36.69	0.61	68.81	20.61	0.96
E.I.	1.86	60	2.33	40.25	0.67	37.03	19.96	1.00

- Deutsche Bahn Method:

$D B$	\mathbf{K}	$\mathbf{E}(\mathbf{t})$	\mathbf{B}	\mathbf{h}	$\mathbf{E r}$	$\mathbf{L z}$	\mathbf{T}	$\mathbf{P b}$	\mathbf{x}
W.I.	0.30	2.86	33.32	0.56	2.29	0.60	60.00	53.62	1.00
E.I.	0.54	2.32	33.94	0.57	1.78	0.60	60.00	27.17	1.02

- \# of GO trains:

Method	Total	LSW	LSW_E	LSE	LSE_E	Ml	KI	RH	BA	ST	
Potthoff	31	1	3	5	3	4	5	3	3	3	2
$\underline{\text { DB }}$	26	\mathbf{I}	3	4	3	3	5	2	2	2	2

Compression Method

- Introduction

Compression Method on a uni-directional track section before and after compression

Procedure

- Identify all possible train paths in an interlocking area
- A full $n \times n$ matrix is set up by listing the actual path against all excluded paths. The value in the specific cell means how long the train that is taking the excluded train path has to wait when the actual train path is being taken (Matrix of occupation time for conflicting paths)

	(min)	pA	pB	aP	aF	fB	fA	bF	bP
	pA	1.7	1.4				1.7		
	pB	1.4	1.7	1.4	1.4	1.7	1.4		
	aP		1.5	1.8	1.3		1.3		1.8
	aF		2.4	2.2	2.9	2.4	2.4	2.9	2.4
	fB		2.4		2	2.4	2		2
	fA	2.4	2	2.1	2.1	2	2.4		2
	bF				2.3			2.3	1.7
	bP			1.8	1.5	1.5	1.5	1.5	1.8

- Provide a sequence of paths as in the timetable

min	3	6	6
Route	pB	pA	fB
Order	1	2	3

- Calculate the occupancy time based on the path sequence and exclusion matrix

Order	Trip	Begin of occupation	pA	pB	aP	aF	fB	fA	bF	bP
1	pB	0	1.4	1.7	1.4	1.4	1.7	1.4		
2	pA	1.4		$\begin{aligned} & =1.4 \\ & =2.8 \end{aligned}$	1.4	*/1.4	*/1.4	$\begin{aligned} & =1.4+1.7 \\ & =3.1 \end{aligned}$	*/0	*/0
3	fB	1.7	*/3.	$\begin{aligned} & \rightarrow 1.7 \\ & =4.1 \end{aligned}$	*/1.4	$\begin{aligned} & =1.7+2 \\ & =3.7 \end{aligned}$	$\begin{aligned} & =1.7+2.4 \\ & =4.1 \end{aligned}$	$\begin{aligned} & =1.7+2.4 \\ & =3.7 \end{aligned}$	*/0	$\begin{aligned} & =1.7+2 \\ & =3.7 \end{aligned}$

Rules

- Each route-occupation starts, considering the sequence of trains, as soon as possible after the preceding route regarding the referring exclusion time
- The total of all occupation times results as the sum of the excluding times of concatenated routes
- Possible simultaneous train movements on parallel routes are considered
- Insert the first trip at the bottom of the calculation table again (last trip). Hence there is no "open end"
- Occupancy Time Rate (OTR) calculation:

$$
\text { Occupancy Time Rate }[\%]=\frac{\text { Ocupancy Time }}{\text { Defined Time Period }} \times 100 \%
$$

- Additional Time Rate (ATR):

$$
\text { Additional Time Rate }[\%]=\left[\frac{100}{\text { Occupancy Time Rate }}-1\right] \times 100
$$

- Capacity Consumption (CC) value:

$$
\text { Capacity Consumption }[\%]=\frac{\text { OccupancyTime } \times(1+\text { Additional Time Rate })}{\text { Defined Time Period }} \times 100
$$

- Concatenation rate: φ :

$$
\varphi(\text { Concatenation Rate })=\frac{K}{Z} \times 100 \%
$$

Procedure to insert trains

- Main assumptions:
- All trains have through movements
- Uniform headway at every depot

Results for capacity analysis

- Capacity Indicators

ICritical Indicator	Evaluating Capacity based on CC	Evaluating Capacity based on OTR		
IMax. Train Volume		West Interlocking	East Interlocking	West Interlocking
Indicator	73%	85%	85%	East Interlocking
Occupancy Time Rate (OTR)	17%	47%	29%	99%
Concatenation Rate	215%	87%	215%	42%
Additional Time Rate	34%	98%	39%	87%
Capacity Consumption (CC)				

- \# of Trains compared against other methods

Effect of adding 1 trip

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Discussion

- Potthoff and DB:
- timetable not required;
- highly averaged results
- Compression Method:
- timetable required;
- determined by the maximum occupancy of all train paths within the same section;
- possible to maximize the capacity with careful scheduling on a timetable
- Both require a matrix of occupancy time for conflicting paths:
- only a pair of paths needs to be evaluated for conflicts
- size of the matrix grows exponentially with the increase of possible train paths
- System stochasticity not considered

Railway Simulation

Railway Simulation

- Simulation tools are recommended to analyze complex railway infrastructure
- General procedure for simulation:
- Data collection
- Model construction
- Model calibration
- Model validation
- OpenTrack was selected as the railway simulator

Model Construction

Main network (including maintenance yards)

Model Input

- Infrastructure layout
- Speed limits
- Train configurations (locomotive, rolling stock)
- Schedules
- Entry delay distributions

Entry Delay Distribution

- Gotracker.ca

Weibull

RH - Oriole (Exclude on time trips)

Exponential
Lognormal
Lognormal

Simulation Flow Chart

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Performance Evaluation

- Result evaluation:
- Simulated On-time Performance (SOTP)

$$
S O T P=\frac{\# \text { of trips arrive within a specified range of schedule time }}{\text { total } \# \text { of trips scheduled }} \times 100 \%
$$

- Simulated Average Delay
- GO Transit's target On-time performance (OTP): 95%
- OTP from data collection: 96.4\%

Base model calibration and validation

Sensitivity Result

Discussion

		LSW	LSW_E	LSE	LSE_E	MI	KI	RH	BA	ST	
Method	$\\|^{\text {Total }}$	Lakeshore West	Lakeshore West (Express)	Lakeshore East	Lakeshore East (Express)	Milton	Kitchener	Richmond Hill	Barrie	Stouffville	
Current Schedule	25	2	4	2	3	5	2	2	3	2	
Potthoff	131	3	5	3	4	5	3	3	3	2	
DB	\| 26	3	4	3	3	5	2	2	2	2	
Compression (OTR)		6	7	6	6	5	6	6	7	6	
Compression (CC)	50	6	7	6	6	5	4	6	4	6	
OpenTrack	39	4	5	4	4	5	4	4	4	5	

- OpenTrack offers a more realistic result by taking the stochasticity into consideration as it attempts to simulate the real-world operation
- The result of between OpenTrack and Compression Method with OTR confirms that practical capacity is around 60% to 75% of the theoretical capacity from the previous research (Kraft , 1982)

Method	Total Trains	LSW	LSW_E	LSE	LSE_E	KI	MI	BA	RH	ST
Compression (OTR)	55	6	7	6	6	5	6	6	7	6
OpenTrack	39	4	5	4	4	4	5	4	4	5
Ratio (\%)	71%	67%	71%	67%	67%	80%	83%	67%	57%	83%

Problems

- Dwell time was fixed at 5 minutes
- Only focus on train movements on the railway
- Pedestrian flow on the platform level could be complicated due to the platform layout and barriers
- The interactive effect between train and pedestrian movements was not captured

Integrated Rail and Pedestrian Simulation - Nexus

Nexus

Dwell Time Components

Alighting Behavior - Observation at Union

Problem Statement

- The unique behavior would influence the density and crowding on the platform differently
- The time that last passenger exit the train would affect the departure time of the train, especially for trains that become out of service after they arrive at Union, as trains cannot leave if passengers are still on board
- Traditional Passenger flow time modeling cannot represent both effects properly (Total passenger flow time and density)

Method

- Main Idea: represent the observed alighting curve with two linear lines with different flow rates
- Each record of train door passenger count is studied, break point is selected based on visual inspection; linear regression is performed on the resulting segment a and segment b respectively; R^{2} values for the slopes of both lines are examined

Variables Extracted:

- Total passengers: TP
- Turning point (\%): ρ
- Passengers in segment a: $T P_{a}$
- Flow rate in segment a: f_{a}
- Passengers in segment b: $T P_{b}$
- Flow rate in segment b: f_{b}

Data Analysis

- Statistical analysis for ρ, f_{a}, f_{b}

- Correlation analysis

	Total_Psg	Total_Psg_seg_a	Turning_Point	Seg_a_Flow_Rate	Psg_seg_b	Seg_b_Flow_Rate	
Total_Psg	1						
Total_Psg_seg_a	0.911666804	1					
Turning_Point	-0.037696351	0.354965918	1				
Seg_a_Flow_Rate	0.239571138	0.200437577	-0.068153854	1			
Psg_seg_b	0.715672756	0.367111995	-0.678531836	0.197095319	1		
Seg_b_Flow_Rate	0.578958678	0.347539801	-0.391475978	0.349225841	0.726731882	1	

Model Proposed

Alternative	Observed	Model
Avg. total time (sec)	104.1	107.1
Max. Total time (sec)	211.0	221.1

Pedestrian Simulation

- MassMotion

Model Calibration

- Calibration:
- adjust queue cost at certain areas
- adjust wait cost
- alter agent characteristics (i.e. body radius and direction bias)
- GEH statistical method
- compare observed and simulated traffic/pedestrian volumes at links (staircases)

$$
\epsilon_{H}=\sqrt{\frac{2(m-c)^{2}}{m+c}}
$$

- Visual inspection

Model Calibration and Validation

- Validation

Nexus

Model Input

- Individual simulation models (MassMotion, OpenTrack)
- General Transit Feed Specification dataset (GTFS)
- Complete list of agents with OD itinerary

Simulation Flow Chart

Model calibration and validation

Evaluating System Performance

- Simulated On-time Performance (SOTP, \%)
- Simulate average arrival delay at Union (min)
- Average dwell time (min)
- Hourly inbound and outbound passenger volume (Person)
- Average percentage of inbound and outbound passengers per second at LOS F (\%)
- Average duration at LOS F for each inbound and outbound passenger (Sec)

LOS	Platforms (queueing)		Stairways	
	Density (person/m ${ }^{2}$)	Space ($\mathrm{m}^{2} /$ person)	Density (person/m ${ }^{2}$)	Space ($m^{2} /$ person)
A	$\mathrm{x}<=0.826$	$x>1.21$	$x<=0.541$	$x>=1.85$
B	$0.826<x<=1.075$	$1.21>x>=0.93$	$0.541<x<=0.719$	$1.85>x>=1.39$
C	$1.075<x<=1.538$	$0.93>x>=0.65$	$0.719<x<=1.076$	$1.39>x>=0.93$
D	$1.538<x<=3.571$	$0.65>x>=0.28$	$1.076<x<=1.539$	$0.93>x>=0.65$
E	$3.571<x<=5.263$	$0.28>x>=0.19$	$1.539<x<=2.702$	$0.65>x>=0.37$
F	5.263<x	0.19>x	$2.702<x$	$0.37>x$

Scenario Tests

Scenario Tests

OpenTrack Sensitivity Test: 39 trains, 5 min dwell time

39 trains/h 12 Cars/Train 162 seats +256 standees/car

Scenario Tests

Scenario Tests Results

- - - Nexus Base Model (PHF=0.36, 2-min buffer, alighting behavior, internal departure time) —nexus Scenario Test 1 (PHF=0.34, 2-min buffer, alighting behavior) —Nexus Scenario Test 2 (PHF=0.49, 2-min buffer, alighting behavior) - Nexus Scenario Test 3 (PHF=0.60, 2-min buffer, alighting behavior) \square Nexus Scenario Test 4 (PHF=0.65, 2-min buffer, alighting behavior) ——Nexus Scenario Test 5 (PHF=0.70, 2-min buffer, alighting behavior) $\cdots \cdots$. Nexus Scenario Test 5A (PHF=0.70, alighting behavior)
........ Nexus Scenario Test 5B (PHF=0.70)

Scenario Tests Results

SOTP, Average Delay with the increase of IB Psg Volume (Train arrivals $=39 / \mathrm{Hr}$)

Scenario Tests Results

Scenario Tests Results

*total delay time (number of passengers \times delay)

Scenario Tests Results

Scenario Tests Results

Scenario Tests Results

Base Model

Scenario 5

Further Scenarios

Conclusion

Conclusions

- Analytical methods are not sufficient to capture the stochasticity of a complex area
- Railway simulation fails to account for the impact of pedestrian movements
- Both pedestrian movements and train movements have interactive effect on the total capacity of a complex station area

Contribution

- Performed a comprehensive comparative analysis among various analytical and simulation methods on the capacity of a node area
- Affirmed that practical capacity is around 60\% to 75% of the theoretical capacity
- Observed unique terminal passenger alighting behavior, proposed a simple initial model
- Identified the benefit of using integrated simulation model

Future Work

- Apply Nexus for new service concepts like RER
- Study optimization methods
- Consider the capacity of maintenance yards, turn-back movements at the Union Station
- Further develop the alighting behavior model for the terminal station by considering other factors
- Apply Nexus in other complex transit systems which are sensitive to delays

Acknowledgements

ARUP

METROLINX

Thank you

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

