University of Trieste

Dept. of Engineering and Architecture

UNIVERSITÀ DEGLI STUDI DI TRIESTE **University of Trieste**

Coupling OpenTrack with external Optimization Tools

An example in energy-efficient timetabling

giovanni.longo@dia.units.it

Dept. of Engineering and Architecture

UNIVERSITÀ DEGLI STUDI DI TRIESTE

"

Introduction

- Professor in Transport Planning and Railway Operations, involved in research projects since 1996
- OpenTrack user since 2004
- > Founder of the Railway and Traffic Laboratory (Liftlab) in 2007
 - $\checkmark\,$ Spin-off of the University of Trieste
 - \checkmark Analysis and simulation of railway operations
 - ✓ Italy and 28 Countries in 5 Continents
 - ✓ Strategic co-operation with ESTECO S.p.A. in 2016
- API Academic license in 2017

References in Italy

- Main network (Turin-Trieste, Brenner-Neaples)
- Main junctions (Turin, Milan, Venice, Bologna, Florence, Rome, Neaples, Bari, Palermo)

References abroad

Introduction

Wide range of situations

- different levels (from strategic planning to day by day operations)
- different problems (from national networks to Metro and tram lines)
- ✓ different dimensions (from 1 train to hundreds of trains)
- ✓ Passenger, freight, mixed traffic
- ✓ different types of customers (Infrastructure Managers, Train Operating Companies, Regions, Port Authorities, Consulting and Engineering companies,...)

Methodology

- OpenTrack as simulation engine
- Planning loop
- Few number of selected scenarios
 - \checkmark Time consuming
 - \checkmark Complex modeling
- > Optimization?

- ESTECO was founded as **spin-off company** of the University of Trieste in the **late 1990's**, by three Italian Engineers, Carlo Poloni, Luka Onesti and Enrico Nobile.
- Now ESTECO is an independent technology provider of customer-focused software solutions for numerical optimization.

ESTECO clients

Over 300 international clients have relied on ESTECO software to design better and more efficient products across a wide spectrum of industrial sectors.

Research project

Research coordination

Real life railway experience OpenTrack power user

Optimization experience and tools

Aims and outline of the presentation

Present mainly the "architecture" of the approach

- ✓ OpenTrack as micro-simulation engine
- ✓ API to communicate between OpenTrack and the ESTECO Software (third party)
- Discuss a simple but interesting case study (Energy-efficient timetabling)
- Present first results and possible further developments

UNIVERSIT

TRIESTE

Problem: Introduction

- Green transportation is becoming more and more important from environmental perspectives
- Optimal energy-efficient driving strategies can reduce operating costs significantly and contribute to a further increase of the sustainability of railway transportation.
- A number of models and algorithms exist to compute the optimal train trajectories
- Still, finding the optimal sequence and switching points of the optimal driving regimes is a not trivial task
- Energy-Efficient Train Timetabling Problem (EETTP): consists in energy-efficient timetable calculation considering the trade-off between energy efficiency and travel times
- ➢ Regeneration

Problem: Literature Review

- A wide range of models and algorithms exist (see Scheepmaker, Goverde and Kroon paper on European Journal of Operational Research (2017) for a complete review of energy-efficient train control and timetabling)
 - ✓ Dynamic Programming
 - ✓ Mixed Integer Linear Programming
 - ✓ Heuristics
 - ✓ Fuzzy Logic
 - ✓

Let's try to deal with this problem using OpenTrack

Approach based on ESTECO SOFTWARE and OPENTRACK

Integration with ESTECO's Software

OpenTrack and API are used as Black Box: it generates objective and constraint values (OUTPUT VARIABLES) according to the input (INPUT VARIABLES)

Classification of optimizers

Gradie	nt-based	Global Search				
Single	Multi	Single	Multi objective			
objective	objective objective objective		Rapid	Robust		
B-BFGS NLPQLP MIPSQP AFilterSQP Levenberg- Marquardt	NBI-NLPQLP NBI-AFSQP	SIMPLEX	MOGT FAST	MOGA-II NSGA-II ARMOGA MOPSO ES MOSA HYBRID SAnGeA		

Multi Objective Optimization with ESTECO Software

Multi-objective problems are solved using **sophisticated optimization algorithms**, which identify a set of **Pareto designs** (a set of solutions for which it is not possible to improve one goal without worsening the other).

With **ESTECO Software** you can define **the most suitable optimization strategy** according to:

The specific problem

- Problem finds train speed profile in train's itinerary to minimize
 - ✓ Energy Consumption
 - ✓ Total Travel Time
- > The train speed profile is composed by *train driving regime* sequence and possible variables are:
 - ✓ Target Speed
 - \checkmark Length of Cruising regime
- Complete the itinerary

Integration with ESTECO's Software

Open Track Api

Solution Strategy: Genetic algorithms

UNIVERSITÀ DEGLI STUDI DI TRIESTE

Design of Experiments (DOE)

An important preliminary step of an optimisation process is the **initial** (population) sampling of the design space

The initial population for Genetic Algorithm is given by Design of Experiments (DOE) Algorithms

UNIVERSITÀ

DEGLI STUDI DI TRIESTE

Different algorithms (Random, Sobol, ULH,...) exit which covers the space in a different way

Genetic algorithms: Selection

Best individuals are selected (by fitness or dominance criteria)

UNIVERSITÀ DEGLI STUDI DI TRIESTE **Genetic algorithms: Reproduction** Each individual is coded by a binary string 0 Different operators are applied to generate a new population **Initial Population** Crossover Parent 1 Parent 2 **New Individuals** Child 1 Child 2 1 () managing

Genetic algorithms: Reproduction

Mutation

Test Case

Test Case: Details

Station	Speed Limit
А	80 km/h
В	80 km/h
С	80 km/h
D	80 km/h
Е	80 km/h
c_2	75 km/h
G	80 km/h
c_3	80 km/h
h	70 km/h
Ι	80 km/h
L	70 km/h
М	80 km/h
c_4	80 km/h
Ν	80 km/h
c_5	

Test Case

UNIVERSITÀ DEGLI STUDI DI TRIESTE

Speed limit range

Maximum time to engine off (before breaking)

Minimun time to engine off (to reach the following station)

Comparison

Performance 100%									
	Use	r OT	moga-2						
Point	Energy	Time	Energy	Time	∆Time %	Energy	Time	ΔEner	
					/0			Yy 70	
Α	762028	1713	759631	1700	0.76	655783	1713	13.94	
В	626552	1732	624460	1719	0.75	572404	1731	8.64	
С	570388	1748	568163	1734	0.80	534674	1749	6.26	

Performance 90%									
	User OT		moga-2						
Point	Energy	Time	Energy	Time	ΔTime %	Energy	Time	ΔEner gy %	
D	715276	1746	714079	1740	0.34	648951	1746	9.27	
Е	607052	1769	605612	1756	0.73	566103	1769	6.75	
F	554677	1783	552414	1773	0.56	537253	1783	3.14	
									J.S.

Open Track Api

	Performa	nces 100%	Example Solution Moga-2				
STATION	Time		Time		Margins	ΔTime %	
А		01:00:00		01:00:00			
В	01:01:22	01:02:22	01:01:27	01:02:27	00:00:05	5.81%	
С	01:02:54	01:03:54	01:03:00	01:04:00	00:00:01	1.16%	
D	01:05:09	01:06:09	01:05:28	01:06:28	00:00:13	15.12%	
E	01:07:08	01:08:08	01:07:43	01:08:43	00:00:16	18.60%	
C2	01:09:00	01:10:00	01:09:40	01:10:40	00:00:05	5.81%	
F	01:10:44	01:11:44	01:11:26	01:12:26	00:00:02	2.33%	
G	01:13:03	01:14:03	01:13:55	01:14:55	00:00:10	11.63%	
C3	01:15:00	01:16:00	01:15:54	01:16:54	00:00:02	2.33%	
н	01:17:04	01:18:04	01:18:00	01:19:00	00:00:02	2.33%	
I	01:19:05	01:20:05	01:20:08	01:21:08	00:00:07	8.14%	
L	01:20:58	01:21:58	01:22:09	01:23:09	00:00:08	9.30%	
М	01:23:12	01:24:12	01:24:29	01:25:29	00:00:06	6.98%	
C4	01:25:00	01:26:00	01:26:24	01:27:24	00:00:07	8.14%	
N	01:26:38	01:27:38	01:28:04	01:29:04	00:00:02	2.33%	
C5	01:27:54		01:29:20		00:00:00	0.00%	
TOTAL	00:27:54		00:29:20		00:01:26		

MOGA-II Results

NSGA-II Results

MOGA-2 and **NSGA-2** Comparison

Regeneration

File *.tsvP

Rigenerazione pura

Conclusions

- API makes it possible to create a connection to a third party optimization tool
- This may allow to use OpenTrack as micro-simulation engine and increase its potentials
 - ✓ OpenTrack model with API license
 - $\checkmark\,$ Identify exactly Input and Output variables and what is fixed
 - ✓ Optimization tool license
- Increase the number of simulated scenarios (thousands instead of few)
- Increase the quality of results
- > First tests are promising

Further developments

- Extend the application to real life problems by using existing API commands
- > Suggest the development of specific new commands within API
- Analyze the performances of existing optimization algorithms for railway specific applications
- Development of possible improved algorithms

www.units.it

Thank you for your attention

g.longo@liftlab.it