Application of OpenTrack and OpenPowerNet for a Feasibility and Cost Effectiveness Study

Introduction of a Hybrid-trolleybus system in a large European city

Institut für Bahntechnik GmbH

Dipl.-Ing. (FH) Martin Jacob Dr.-Ing. Sven Körner | Dipl.-Ing. Eckert Fritz B.eng. Jens Elger | Dipl.-Ing Felix Bartels

www.bahntechnik.de

Work contents of the feasibility study

- Market research regarding the state-of-the-art technology
- Technical design of the Traction Power Supply system
 - Selection of vehicle and propulsion technology for vehicles charged while driving under consideration of line topology and density of traffic
 - Rating of the vehicle propulsion systems: traction power, auxiliary systems, traction motors, inverter, battery
 - Concept of traction power and recharging infrastructure considering the operation planing and the vehicle and propulsion technology for three scenarios
 - Dimensioning of traction power and recharging infrastructure: Rating and location of grid connection and feeding points as well as of the network structure: traction power substations, overhead line equipment, stationary recharging points; Verification with dynamic traction power simulation: Timetable, driving dynamics, power and energy demand
 - Compilation of Bill of Quantity for vehicles and facilities
- Suggesting a scenario for implementation including scheduling
- Cost-effectiveness and sustainability compared to Diesel and Battery-electric-bus scenarios

Preparation of Traction Power Supply Simulation with

• Operation simulation software

- Traction Power Supply simulation software
- Simulations performed on the basis of iterative loops in terms of assessment of the required normative limits
- Identification of worst case scenario, comparison with the required normative limits
- Defining of electrical devices for adequate rating

Simulationtools

Investigated Network

- Existing bus network of approx. 250 km network length, 14 bus lines
 - Dense bus traffic over the whole day
 - Long line lengths
 - High passenger load with expected increase
- The bus traffic shall be electrified to meet legal requirements regarding climate protection
- Not the whole network shall be electrified
- \rightarrow Investigation of hybrid trolleybuses:
 - \rightarrow Conventional trolley buses equipped with energy storage
 - \rightarrow Hybrid trolleybuses are charged while moving under catenary
 - \rightarrow Less amount of catenary than for conventional trolley buses, in particular switches, crossings and curves
 - \rightarrow Smaller and lower mass of energy storage than for conventional battery buses

Investigated Network Service frequency of bus operation

Institut für Bahntechnik Gmb-

Investigated Network Service frequency of bus operation

Buses per direction during peak hour

7

Scenarios and approach

Scenario 1: with high percentage of catenary wire Scenario 2: minimised reduced catenary wire Scenario 3: reduced catenary wire and reduced bus lines → two scenarios with minimised percentage of catenary wire developed

- The following analyses were performed:
 - minimum line voltage (EN 50163),
 - ability to recognise short-circuits within the TPS compared to maximum operational currents,
 - Load of electrical components versus load capabilities, and
 - Battery State of Charge (SoC) during operation and lifetime analysis
- Based on the simulation results, the design was optimised \rightarrow analyses were repeated
- Iteration until all scenarios were approved for all outage scenarios

Scenario 2 with reduced catenary

Institut für Bahntechnik GmbH

Scenario 2 with reduced catenary

Electrified

- Not Electrified
- Gap in Electrification (e.g. crossing)
- Gap bridged per parallel cable Single lanes with lane-wise coupling
- Traction Power Substation AGEH with feeder cables
 - Short section with overhead line (recharge point)
- Points for orientation 0

Not to scale

80

Sectioning isolators not included in graphic

Detail from overview of Traction Power Supply,

Scenario 2 with reduced catenary

Input Data – Infrastructure

Input Data – Rolling Stock

Parameter	Articulated Bus	Double- articulated Bus	
Length [m]	18	25	
Tare weight [t]	18	24	
Maximum permissible weight [t]	28	39	
Seats Standees 4P/m ² 6P/m ²	42 76 120	52 104 175	
mech. traction power [kW]	240	280	
max. auxiliary power[kW]	45	63	
Recuperation possible	yes		
Battery capacity [kWh]	app. 72		
Battery type (cell chemistry)	lithium iron phosphate		
Mean State of Charge ±Rate [%]	ean State of Charge ±Rate [%] 65 ±25		
End of Life (Capacity in [%] or R _I)	80%		

Articulated trolley bus, Eberswalde (DE)

Double-articulated trolley bus, Zürich (CH)

Input Data – Courses and Timetable

Use	ID	Desc. Comm. Kind
1	66213	613 🔺
~	66214	613
V .	66215	613
~	66216	613
~	66217	613
~	66218	613 Approx.
~	66219	⁶¹³ 30 %
~	66220	613
~	66221	613 double-
~	66222	613 articulated
\checkmark	66223	613 buses
\checkmark	66224	613
\checkmark	66225	613
\checkmark	66226	613
\checkmark	66227	613
~	66228	613
\checkmark	66229	613
\checkmark	66230	613
~	66231	613
~	66232	613
~	66233	613
~	66234	613
~	66235	613
-		
▼▲	Used: 3488	Active: 229 Selected: 1

_				Cou
		Itineraries	Show	→ 647
	•	🗸 🖌 1:613 MAMO 04-NAAM 0 1	Show All	647
			Define	647
			Create T. D.	647
			Create 1. D.	647
		Description: 613		647
		Comment:		647
]		647
		Kind:		647
		Train:		Add R
		Double ArticulatedBus Full	Show	Cours
d		Train Category:		Cours
		Category 1	Show	
) • •		
		Train Speedtype:		
		Reihe R		Show
		Route Reservation / Release:		_
		Discrete		Cours
		, Timetable: First Departure:		Delta
			ew Show	
	v			- E
Þ				

	Course ID	Station	Arrival		Departure		Use	Dwell	Stop	Delta Load	Distr.	
)	64786	RUHU02	HH:MM:SS		05:06:00		~	5	1	0.000		-
	64786	RUHU04	05:07:00		05:07:00		\checkmark	5	~	0.000		
	64786	DWRB01	05:09:00		05:09:00		~	5	~	0.000		
	64786	KWGR01	05:10:00		05:10:00		~	5	\checkmark	0.000		
	64786	LKWR02	05:11:00		05:11:00		~	5	~	0.000		
	64786	RFIE01	05:12:00		05:12:00		~	5	~	0.000		
	64786	WPRD 01	05:13:00		05:13:00		~	5	~	0.000		
	64786	SWRS 02	05:14:00		05:14:00		~	5	~	0.000		
4	64786	TSPR02	05:14:00		05:14:00		~	5	~	0.000		
A	dd Rows I	ns.Rows Del. I	Rows				Functi	ion: Add	Stops	\$	Dwell [s]:	60 Go
Ca	ourse ID	Station	Туре	Min. Wait	Max. Wait	Join :	Split					
_												
												-
					All	Cou		- 24	h tin	netable		
8	ihow Conn. C	ourse Ins. (Connection Del	. Connection	All	Coui		- 24	h tin	netable	Show all	Connection
8		ourse Ins. (Connection Del	. Connection	All	-				7	Show all	Connection
_	II		/	. Connection		-	rses			7	Show all	Connection

3488 Courses within the 24 h timetable

Example screenshot of the courses and timetable data in OpenTrack

Exemplary results

Voltage, Speed, and Battery State of Charge

One vehicle, 3 hours, **different destinations**

Catenary free section

Charging at standstill

Exemplary results

Voltage, Speed, and Battery State of Charge

One vehicle, **3 hours**, **different destinations**

Energy Consumption for different Scenarios

Parameter	Scenario 1 All services / high percentage of electrification	Scenario 2 All services / reduced percentage of electrification	
Performed kilometers	41.339 km	41.339 km	30.938 km
Daily energy consumption @ 33 % auxiliary power	84 MWh	84 MWh	54 MWh
Daily energy consumption @ 75 % auxiliary power	130 MWh	130 MWh	
Annual energy consumption	38 GWh	38 GWh	25 GWh
Specific energy demand per bus	2,5 kWh / km	2,5 kWh / km	

Comparison of energy consumption

Environmental Effects

Emission savings

Economic efficiency comparison

Comparison of specific annuities

the other variants.

Summary of results

- Hybrid trolleybus system for the chosen city is technically and economically feasible.
- A hybrid trolleybus is especially advantageous where bus lines are concentrated and characterised by **high passenger numbers** and **long trip lengths**.
- Hybrid-trolleybuses combine trusted, proven, and reliable technology of conventional trolleybuses with modern battery storage technology → this allows high-performant and reliable operation.
- With an on-board energy storage, turns, crossings and other sections where electrification is complicated and expensive or unwanted for aesthetic reasons can be realised catenary-free
 → Broadened flexibility for the best technical realisation of urban electrical infrastructure.
- From economic point of view, the hybrid trolleybus is an alternative to other electric bus technologies, with the additional possibility to operate bigger vehicles (e.g. double-articulated buses).
- The comparison of specific annuities shows that it is worth in general to invest in electrical infrastructure for continuous storage loading and operating a bus system in case of dense headways and a high transportation quantity.

Thank you for your attention!

Institut für Bahntechnik GmbH Branch Office Dresden Wiener Straße 114-116 01219 Dresden

www.bahntechnik.de | www.openpowernet.de

Dipl.-Ing. (FH) Martin Jacob Tel.: +49 351 87759 – 42 Email: mj@bahntechnik.de

Institut für Bahntechnik GmbH Berlin - Dresden

www.bahntechnik.de