

Advanced Use Of The OpenTrack Script Mode

Or How To Make OpenTrack Do Things It Can't Do Without Making You Do Things You Can't Do

optimising railways

Agenda

- 1. Random simulations and robustness
- 2. Script mode basics
- 3. Examples of advanced use
- 4. Demo
- 5. Homework challenge

Robustness? Random Simulation! Except...

Simulation		\times	
Simulation			\$
Start Time:		08	:00:00
Stop Time:		10	:00:00
Break Time:		00	:00:00
Step [s]:	Bes	t ‡	1.0
Current Time:		00	:00:00
_ Scenario			
Adhesion Outs	ide:	norma	i 💠
Adhesion Tunn	el:	norma	1
Delay Scenario	0:	None	÷
Simulation Run: 0 / 100			
Mean Delay [s]: 0.00			
Performance [%]: 100			100
Misc.			
Keep Occupations			
Optimize Dispatching			
□ Pause if Sig. Stop [s] >			
_ Animation			
Show Train			
)esc	r. 📃	Delay
M	¢	S (Se	c.) 💠
Show curr. Time HH:MM:SS \$			
Show Instruments			
Start Star			Cton
Start Step	Pa	use	Stop

- The robustness analysis is one of the main usages for simulations
- Robustness is the ability of the plan to offer operational reserves that counterbalance all the little random disturbances
- Random disturbance \rightarrow random simulation \rightarrow Monte Carlo Simulation
- Typically, for statistical robustness, about 100 randomized runs are necessary
 - OpenTrack can do that, but a limited number only

And then, we got the special cases...

Sometimes, impossible things are needed

Three example cases

- Output the actually used random values for primary delays
 - Check the model does what it is supposed
 - Advanced data analysis
- Use special dwell time distributions
 - Specific distributions per station, hour, timetable variant, vehicle...
 - Maybe based on analysis of real operations data
- Stops on demand

4

- Critical on some lines
- Typically quite random

But OpenTrack can't do that?

Do Not Despair! Do Script Mode!

Reminder: how to use it

- 1. Prepare the simulation in OpenTrack.
- 2. Start OT once with the parameter –scriptinit
- 3. Start OT n-1 times with the parameter -script
- 4. Analyse data collected in one file (txt or xml)
- For steps 2 and 3 in Windows, a batch file can be prepared easily
- On the Mac, Automator is probably the way to go

Useful Options for the Script Mode

Manual §3.20 (V1.9)

- -runfile

- define files, folders, incidents, simulation parameters, etc...
- -asciitexttimetable
 - Create a timetable in the OpenTrack text format
 - Have it imported at the start of the simulation
- -delayscenario
 - Impose the delay scenario you want to be used
 - Defined can also be imposed!

But... how's this useful?

Example

- Robustness analysis done 2018 on the Littorail line at Neuchâtel
- Future changes in rolling stock, frequency and demand

Case 1: Actual Random Primary Delays

- Random delays are known only for the "Defined" delay scenario
- But there's only one...

- ... Except if you create the random values yourself in Excel
- Create a text format timetable 100 times, every time recalculating the Excel sheet
- ... import one of these timetables for each of the 100 runs

Case 2: Funny Distributions

- Example : comparison between old timetable with old rolling stock and several variants of new timetables with new rolling stock
- Analysis of real operations data
- Calibration of a dwell time model
- → Average dwell times calculated per station, hour, type of rolling stock, interval, etc.
- → Specific dwell time distribution adjusted around that value
- → Randomized calculation in Excel for each of the 100 Monte Carlo runs

Case 3: Stop On Demand

- Trains stop only, if there's passenger wanting to get on or off
- Trains may have to slow down going through a station
- If real operations data is available:
 - Statistical analysis of the actual stops over a period of several months
 - Look for dependencies

- Calculate stop probability per hour and direction
- Impact of changing frequencies and demand?
- Use of random function in Excel to determine if the stop is made or not for each train at each stop-on-demand station

C? Java? Scala? Python? VBA!

- There are a lot of things to calculate
- There is a lot of data to manage
- Automation of the processes
 - Creation of random values
 - Export of randomized timetables
 - Management of random simulations in script mode
 - (Result analysis)

- Use of Excel for calculation
- \rightarrow Use of VBA in Excel for automation

Does It Work?

You bet!

But There Are Limits!

- All is predefined \rightarrow no reaction on what happens in the simulation
 - Iterative with the script mode
 - API...

- No action on the courses, only on the timetable
 - (peek at Dani...)

Homework Challenge

Crossing station
No independent access to the intermediate platform
Intermediate platform is to

narrow

Result: the train on the second track needs to keep the doors

closed until the train on the first platform is gone So: the dwell time of the second train starts n seconds after the departure of the first train...

50 m

Google Earth

Questions?

Sources for the different images:

- Mummy p. 5: Wikipedia Sailko, CC BY 3.0
- Map p. 8: Trafimage
- Photo p.8: Wikipedia Roland Zumbuehl, CC BY 3.0
- Aerial p. 15: Google Earth
- Others: SMA
- All copyrights remain at their owners.

Contact

17

SMA (France) SAS 45-47 rue d'Hauteville 75010 Paris France

Phone +33 1 84 88 47 80 paris@sma-partner.com www.sma-partner.com