

Using OpenTrack to evaluate Rollingstock and Infrastructure Projects in Queensland Rail

PREPARED BY David Lassen

David Lassen – Queensland Rail

Network Capability Manager

David Lassen

- Queensland Rail Since 1985
- Started as a Nipper for a Bridge Gang
- Moved to Train Control
- Introduced to timetable planning system
- Capture Proving and Mtrain, written in Fortans running on DOS
- Timetable design for 11 years
- Moved to below rail assets in Network
- Created Network Capability 10 years ago
- Introduced OpenTrack and OpenPowerNet user for 8 years

Rolingstock Upgrade

How can we help you?

New Traction Package Proposal

SMU200

Vehicle Details

Constructed -1994-1995
Maximum speed - 100 km/h
Braking system - Blended Regenerative
electric and electro-pneumatic
Fleet 201 – 212, Twelve 3 car vehicles

Current OpenTrack Configuration

New Traction Package Proposal

IMU100

Vehicle Details

(GRAU 100 DAMAGT

Constructed -1993-1997

Maximum speed - 140 km/h

Braking system - Blended Regenerative electric and electro-pneumatic

Fleet 101 – 110, Ten 3 car vehicles

Current OpenTrack Configuration

Train Name: QR IMU 100 (6 car)						Default
Description:	<u> </u>					
Type:	Commuter / Re	egin Train				
Category:	6 Car SMU/IM					
Engines —						
Pos. Name			Load [t]	Len. [m]		1
1 QRIMU 100 DM+M+DT		DT T	129.000	71	_	Delete
2 QR IMU 100 DM+M+DT		TC	129.000	71	•	Add
4					Þ	
E Load[t]:	258.000 Σ Len	[m]: 14:	2			
Pos. Name			Load [t]	Len. [m] PL	oss [kW] No. of	7
ros. Maile			LUAU [t]	remini L	.033 [KW] NO. 01	Delete
					-	Delete
1					•	Add
∑ Load [t]:	0.000 ∑ Len	.[m]:	0			
Resistance Eq						
Rolling: Stra	hl/SauthoffFo	rmula				
A:		B:	C:		Ui	nit: N
□ S	tarting Res. [N/t	j: [below Speed [km/	'n):
Gradient: Dist	ributed Mass p	er Train			\$	
Curve: Roe	cki Formula 10	00 mm (Trains))		¢ [9	6]: 50.0
Acceleration (Train related S	ettings)				
Max. Accelera	ition [m/s^2]:	1.00 M	ax. Drawba	r Force [kN]:		
Acc. Delay [s]		0 ▽ Mi	n. Time to I	nold Speed [s]:	30.0	
Acc. Delay at	Stop [s]:	0				
Deceleration						
Deceleration F	unction: Defa	ault			:	<u> </u>
From [km/h]	To [km/h]	Dec. [m/s^2]				Delete
	v max.	-0.90			_	Add
0						7
0						
	t Percentage (E	WP) [%]:				100
Braked Weight		WP) [%]:	C 1:	C2:	Result [m/s	
Braked Weight a = - (C1+C2*I	BWP)	WP) [%]:	C1:	C2:	Result [m/s	^2]:
Braked Weight a = - (C1+C2*l	BWP) ic Braking			C2:		^2]:
a = - (C1+C2"I Use Dynam	BWP) ic Braking eleration on Gi		:/%]	C2:		/h]: 0.010

Data Request

Data requests

Rollingstock approached us for track data for the vendor We asked why?

A tentative answer, The vendor wants to run some simulations. We asked what is the vendor looking for?

The vendor just wants some Speed, Times and Energy data.

We said we can supply the Vs, Ms, TT and TSVP files if the vendor supplies the rollingstock data.

Data Supplied

New Tractive and Braking effort curves for SMU200

New Tractive and Braking effort curves for IMU100

Simulation Request

Can you please let me know if 14 working days after receipt of the TE and BE data in format you can work with, is sufficient to run the SMU200/IMU100 class service time tables to confirm whether there are any OTR issues with full performance and 75% of full performance (6-cars only)? Please let me know.

The Process

- 1. Convert the Fig files to OpenTrack Z/V import files(MatLab)
- 2. Talk to Timetable Planners to get Master Template Services.
 - a. 26 template services delivered in RailMI file
 - b. Prepare 26 Itineraries for OpenTrack Master Network
- 3. Build 4 New Engines
 - 1. IMU100 Full Performance.
 - 2. IMU100 75% Performance 1 line converter in operation.
 - 3. SMU200 Full Performance
 - 4. SMU200 75% Performance 1 line converter in operation.
- 4. Build 8 New Trains
 - 1. QR IMU 100 (3 car) Traction package upgrade
 - 2. QR IMU 100 (3 car) Traction package upgrade 1LC
 - 3. QR IMU 100 (6 car) Traction Package Upgrade
 - 4. QR IMU 100 (6 car) Traction Package Upgrade 3LC
 - 5. QR SMU 200 (3 Car)traction package upgrade
 - 6. QR SMU 200 (3 Car)traction package upgrade 1LC
 - 7. QR SMU 200 (6 Car) traction package upgrade
 - 8. QR SMU 200 (6 Car) traction package upgrade 3LC

Simulation Request

The Process

- 5. Assign fleet to Master Template services, IMU fleet to regional lines
- 6. Simulate
- 7. Outputs

Simulation

Outputs

Simulation

Outputs

Speed Distance Performance
IMU 100 Regional Line
Magenta – Current Configuration
Blue – New Configuration Full Performance
Cyan – New Configuration Reduced Performance

Simulation

Outputs

Result findings

Current IMU Trains are to light, 30 tonne difference.

Similar problem with the SMU200.

New Configuration compliant with Master Train Plans

Sharing of outputs with vendors to enable validation

Vendor Outputs from data shared from OpenTrack

Vendor utilised the Vs, Ms, TSVP and IVT outputs to evaluate and model their requirements.

Both teams working on the same page, for different contractual requirements. This enabling is achieved by sharing uncomplicated data.

Infrastructure Proposal

Wacol Yard redevelopment

Simulation Request

Redesign the old yard for use by rail infrastructure work trains Ballast, Sleeper, Spoil trains and empty consist storage Braking deficiency in current signal design

Current OpenTrack document

Proposed OpenTrack document

Documents Supplied

Documents Supplied

Documents Supplied

Outputs from Simulation – Current State

Outputs from Simulation – Option 1

Outputs from Simulation – Option 2

Outputs from Simulation – Headway

Loaded Coal Down Main - Current, Option 1 & 2

Empty Coal Up Main - Current, Option 1 & 2

Outcomes from Simulation

Project did not proceed Re-signalling exceeded budget allowed for whole project. Operators did not know how they wanted to use the yard.

The 2019 Queensland Rail Suite

CLIP

OpenTrack

TRENO

Thankyou for your attention

Questions?

